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ABSTRACT
Disaggregated database systems achieve unprecedented excellence
in elasticity and resource utilization at the cloud scale and have
gained great momentum from both industry and academia recently.
Such systems are developed in response to the emerging trend of
disaggregated data centers where resources are physically sepa-
rated and connected through fast data center networks. Database
management systems have been traditionally built based on mono-
lithic architectures, so disaggregation fundamentally challenges
the designs. On the other hand, disaggregation o�ers bene�ts like
independent scaling of compute, memory, and storage. Nonetheless,
there is a lack of systematic investigation into new research chal-
lenges and opportunities in recent disaggregated database systems.

To provide database researchers and practitioners with insights
into di�erent forms of resource disaggregation, we take a snap-
shot of state-of-the-art disaggregated database systems and related
techniques and present an in-depth tutorial. The primary goal is to
better understand the enabling techniques and characteristics of
resource disaggregation and its implications for next-generation
database systems. To that end, we survey recent work on storage
disaggregation, which separates secondary storage devices (e.g.,
SSDs) from compute servers and is widely deployed in current cloud
data centers, and memory disaggregation, which further splits com-
pute and memory with Remote Direct Memory Access (RDMA)
and is driving the transformation of clouds. In addition, we men-
tion two techniques that bring novel perspectives to the above two
paradigms: persistent memory and Compute Express Link (CXL).
Finally, we identify several directions that shed light on the future
development of disaggregated database systems.
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• Information systems! DBMS engine architectures; Rela-
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1 INTRODUCTION
Resource disaggregation has recently emerged as a promising archi-
tecture in modern data centers and is evolving the clouds towards
disaggregated data centers (DDCs) [1, 3, 22, 53]. In DDCs, resources
such as compute (e.g., CPUs and GPUs), memory (e.g., DRAM), and
storage (e.g., SSDs and NVMs) are no longer aggregated in mono-
lithic servers as in the traditional setting. Rather, they are physi-
cally separated from each other, managed in independent resource
pools [12, 47], and connected via fast networking, e.g., Remote Di-
rect Memory Access (RDMA). While pools hosting each type of
resource necessarily contain some amount of other resources (e.g.,
low-frequency CPUs in the memory/storage pools that manage
local resources and process accesses, or a modest amount of DRAM
in the compute pool that caches data), the expectation is that the
amount is small. A typical data center application running on top
of this architecture will require coordination across disaggregated
pools to access resources of di�erent types.

Resource disaggregation can achieve substantial operational ad-
vantages for cloud data centers. First, it enables higher resource
utilization and less resource fragmentation due to hardware decou-
pling and pooling. This translates to lower total cost of ownership
(TCO) and thus more e�cient hardware investment. Second, re-
source disaggregation provides independent elasticity for scaling
compute, memory, and storage, which is becoming increasingly
critical in the cloud. Users can request instances and scale them
up and down with arbitrary combinations of compute, memory,
and storage capacities in response to workload changes without
overprovisioning. Existing monolithic servers fail to provide this
feature neatly. Independent elasticity also matches the needs of
the emerging serverless computing. In addition, resource disag-
gregation facilitates higher reliability and lowers operational cost
because each type of resource can fail and be upgraded without
interfering each other. Finally, resource disaggregation provides
users the illusion of having a near-in�nite pool of resources for
applications, which simpli�es programming in the cloud. Due to
these bene�ts, disaggregated designs have been widely adopted by
cloud providers, e.g., Amazon [40], Microsoft [6, 27], Alibaba [11],
Google [16, 29], and IBM [1].

This novel architecture has signi�cant implications on database
systems. The �rst is about mitigating the overhead incurred by dis-
aggregation. In DDCs, what used to be local accesses now become
network communication. Despite rapid advances in data center net-
working in recent years [9, 19, 33], communication remains the per-
formance bottleneck in database systems compared to computation
and accesses to memory and storage devices due to various reasons.
Hence, database systems need to be aware of the underlying hard-
ware changes and optimize data movement across resource compo-
nents to reduce potential performance degradation. In particular,
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Figure 1: Shared-storage design atop disaggregated storage.

disaggregated database systems usually perform software-level dis-
aggregation to decouple their storage engine—logging and storage—
from the compute engine that encompasses SQL layer, caching, and
transactions to better align with the underlying hardware-level re-
source disaggregation [6, 15, 40]. The software-level disaggregation
enables a wide range of techniques to minimize the network I/O
overhead, e.g., log-as-the-database [6, 15, 40], o�oading [48, 55],
caching [14, 41], and better exploitation of hardware characteris-
tics [10, 11].

Another implication is about leveraging the bene�ts enabled
by disaggregation. The resource pooling (storage pooling [40, 47]
and memory pooling [11, 12]) makes a good case for disaggre-
gated databases to share storage or even share memory. Figure 1
shows the shared-storage architecture adopted in disaggregated-
storage database systems, e.g., Amazon Aurora [40], Azure SQL
Hyperscale [8], and Google AlloyDB [16]. Figure 2 illustrates an
emerging shared-memory design on top of disaggregated mem-
ory [44]. Traditional distributed databases (e.g., MySQL Cluster,
PostgreSQL Citus [13], Teradata, MemSQL, VoltDB, SQL Server
PDW, and Greenplum) have been considering distributed shared-
nothing as the “gold standard” [37, 38]. However, in the cloud the
shared architectures are more compelling because compute servers
now become stateless and thus can achieve better scalability and
elasticity, ease of migration, and fast crash recovery.
Scope and overview. In this tutorial we survey disaggregated
architectures and systems related to relational databases under two
disaggregation paradigms: storage disaggregation and memory dis-
aggregation, and we involve both OLTP and OLAP in each category.
In addition to secondary storage devices, e.g., SSDs, we also discuss
persistent memory (PM) in storage disaggregation. For memory
disaggregation, the discussion mainly centers around RDMA-based
memory disaggregation, but we also cover CXL. Finally, we con-
clude this tutorial by discussing several promising future directions
on disaggregated databases. Overall, we believe that this is an excit-
ing moment to re�ect on the evolution of database system designs
with the decoupling of compute, memory, and storage.

Tutorial outline (90 min in total)
(1) Introduction and motivation (5 min).
(2) Storage disaggregation (30 min).
(3) Additional discussions on PM (10 min).
(4) Memory disaggregation (30 min).
(5) Additional discussions on CXL (10 min).
(6) Future directions (5 min).

Target audience and prerequisites. The target audience for this
tutorial includes students, researchers, and practitioners who want
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Figure 2: Shared-memory design atop disaggregatedmemory.

to understand the enabling techniques of storage and memory
disaggregation and learn the challenges and solutions in building
disaggregated database systems from both industry and academia.
The tutorial is self-contained in providing necessary background on
resource disaggregation, so no prior knowledge of disaggregated
architectures is required. However, basic knowledge of relational
database systems is helpful to understand the materials.
Related tutorials. This tutorial has not been given by the authors
in other venues, so SIGMOD 2023 will be the �rst venue where this
tutorial will be o�ered. Disaggregation, especially that of memory,
is an emerging cloud design, and to the best of our knowledge
there is no prior tutorial holistically investigating disaggregated
databases. Although there have been tutorials and books on cloud
databases [25, 26, 31, 32], their main focus was on storage disaggre-
gation. This tutorial signi�cantly expands the horizon of disaggre-
gation with recent materials on memory disaggregation, persistent
memory disaggregation, and CXL-based database disaggregation.

2 STORAGE DISAGGREGATION
In this section, we present databases that are optimized for storage
disaggregation. Traditional databases are ill-suited for the under-
lying storage disaggregation to support important features such
as elasticity, independent scaling, cost e�ciency, and fast recovery.
Database systems for storage disaggregation embrace two inno-
vations: (1) Software-level disaggregation: Instead of using the
legacy monolithic database architecture where all the database
components are tightly coupled together, they decouple the storage
engine and compute engine to enable independent scaling and sup-
port more performance-related optimizations. (2) Shared-storage:
Instead of sticking to shared-nothing, they adopt the shared-storage
architecture to support extreme elasticity and scalability, as well as
fast recovery. Figure 1 shows the brief architecture of Aurora [40],
which is an exemplary disaggregated database system.

Next, we will present the main ideas of di�erent disaggregated
database systems for storage disaggregation (OLTP in Sec. 2.1 and
OLAP in Sec. 2.2) that di�er in implementation details and the
optimizations developed.

2.1 OLTP Databases
Aurora [40] is a popular OLTP database that leverages the under-
lying storage disaggregation. It separates the storage engine and
compute engine. To reduce the expensive network I/O cost, Au-
rora only sends logs rather than the actual data pages over the
network to the storage engine. Aurora redesigns the storage engine
in order to generate data pages based on logs asynchronously. The
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storage engine is also designed to be highly available where each
data segment (of size 10GB) is six-way replicated over three AZs
(available zones). To support elasticity and scalability, Aurora can
add replica nodes (a.k.a reader nodes) in addition to the primary
node (a.k.a writer node). All the compute nodes share the same
storage but only the primary node can process write requests (read-
write transactions) in order to avoid write con�icts and distributed
transactions.

PolarDB [10, 25] has a similar architecture with Aurora that sep-
arates the compute layer from the storage layer. But it has di�erent
implementations. PolarDB sends both data pages and logs to the
storage instead of just sending logs. In order to improve perfor-
mance, PolarDB leverages emerging hardware such as RDMA and
3D Xpoint SSDs to reduce the network overhead and transaction
commit time. The storage layer is also di�erent from Aurora in the
sense that PolarDB relies on a lightweight POSIX-like �le system
called PolarFS to guarantee persistence. PolarFS provides durability
through a three-way replication with an optimized Raft protocol.
PolarDB is elastic and high-performant but may su�er from high
cost because of using advanced hardware.

Socrates [6] also embraces the ideas of disaggregation, shared-
storage, and log shipping following Aurora. But Socrates separates
the notion of durability and availability by decoupling the database
into four tiers: compute tier, log tier (XLOG service), storage tier,
and the Azure Storage Service (XStore). The new design allows
Socrates to have customized optimizations for durability and avail-
ability, e.g., durability does not require copies in fast storage while
availability does not require a �xed number of replicas. But it may
potentially introduce more data movement since it needs to write
pages from the storage tier to XStore over the network.

Taurus [15] takes the ideas from Socrates further with �ne-tuned
optimizations by observing that the data access patterns for the
database logs and database pages are di�erent. Thus, Taurus uses
di�erent replication and consistency techniques for logs and pages
to obtain high performance, high availability, and low storage cost.
However, Taurus uses the writer node to send logs that may add
signi�cant burden to the writer node (considering there is only one
writer) while Socrates relies on the XLOG service to disseminate
logs. To mitigate the overhead, the writer node only guarantees
that the updated pages are propagated to one page store (instead
of three) and leverages the gossip protocol to achieve consistency
among di�erent page stores.

2.2 OLAP Databases
Snow�ake [14, 41] is a widely known disaggregated OLAP data-
base system. It is based on the shared-storage (rather than shared-
nothing) architecture. It separates storage from compute to allow
independent scaling and elasticity. In the storage layer, data is parti-
tioned into large immutable �les that are stored in the cloud storage,
e.g., S3. In the compute layer, there are many virtual machines (e.g.,
EC2 instances) organized into Virtual Warehouses (VWs) that can
be scaled up and down independently of data storage to support
elasticity. The execution engine in the VW is columnar, vectorized,
and push-based to achieve high performance. Besides that, there
is a cloud service layer that manages VWs and metadata and also
performs query optimization and transactions.

AnalyticDB [49] is the disaggregated OLAP database developed
by Alibaba that has a similar architecture with Snow�ake but it has
di�erent optimizations. AnalyticDB uses the hybrid storage format
(instead of purely column store) to e�ciently support both OLAP
queries and point-lookup queries. It also maintains all-column in-
dexes and develops customized optimizations to leverage indexes
to support complex ad-hoc queries at the expense of maintaining
expensive indexes, while Snow�ake only maintains light-weight in-
dexes (e.g., min-max index [30]). Besides that, AnalyticDB decouples
reads from writes to allow independent read/write optimizations.

Polaris [4] is a distributed OLAP database that powers Azure
Synapse. Similar to Snow�ake, Polaris embraces the concepts of
storage-compute separation and shared-storage into the design.
But the di�erence is that the compute cluster in Polaris (called
Polaris Pool) is responsible for the whole query lifetime (e.g., com-
pilation, optimization, and execution) while the compute cluster in
Snow�ake only executes the query plan. Also, Polaris introduces
the concept of “cell” to abstract heterogeneous data and develops
a �exible task orchestration framework and global workload task
graph to e�ciently execute distributed queries.

Redshift [7] is Amazon’s fully managed OLAP database service
optimized for storage disaggregation. Unlike Snow�ake, Analyt-
icDB, and Polaris, Redshift initially adopts the shared-nothing MPP-
style (massively parallel processing) architecture to achieve fast
performance [20]. But recently, it shifts the architectural design
to incorporate the disaggregated storage (called Redshift Managed
Storage [2, 7]) to allow independent scaling. Redshift scales compute
nodes via multi-cluster autoscaling (called Concurrency Scaling).
It also introduces many optimizations, e.g., compression, query
compilation, o�oading, and FPGA accelerations (called AQUA).
Besides that, Redshift develops many ML-based optimizations, e.g.,
automated workload management and physical tuning.

2.3 Persistent Memory Disaggregation
Next, we present database optimizations for persistent memory
(PM) disaggregation.

Persistent memory (a.k.a non-volatile mainmemory) is an emerg-
ing memory technology that achieves memory-like speed while
guaranteeing persistence. Examples include PCM and Intel Optane
PM. Compared with DRAM, PM has higher density and lower cost
per GB in addition to persistence. Compared with SSDs, PM is sig-
ni�cantly faster and is byte-addressable. There are recent studies
advocating PM disaggregation to support elasticity and indepen-
dent scaling [21, 34, 50]. Another advantage of PM disaggregation
is that it can even improve performance [36].

There are unique challenges for PM disaggregation. First, some
types of PM require high-end servers to host. For example, Intel
Optane PM needs at least 2nd generation Intel Xeon or Platinum
CPUs. Thus, di�erent from the fact that a memory or disk server has
weak computing capability, a PM server may have much stronger
computing capability. As a result, it becomes critical on how to best
leverage the remote computing power in the PM servers. Second, it
is also non-trivial to guarantee remote persistence in the presence of
RDMA. Directly using one-sided RDMA write may not necessarily
guarantee remote persistence [21] because data is stored in the
CPU cache of the remote PM server.
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Kalia et al. present an initial evaluation of accessing remote
persistent memory through RDMA [21] based on Intel Optane PM.
It discovers many interesting results. For example, it �nds that
directly writing data to remote PM using one-sided RDMA cannot
guarantee persistence because thewritten datamay be in the remote
server’s NIC or PCIe bu�ers. It requires one more RDMA read to
�ush the prior writes. It also compares the one-sided and two-sided
approach (i.e., RPC) to guarantee persistence, which turns out that
the two-sided approach is even faster.

Oracle Exadata has also deployed PM disaggregation [36]. A
straightforward solution to use PM is to directly attach it to a lo-
cal server. However, it turns out that existing I/O stack introduces
signi�cant software overhead that can squander the fast I/O perfor-
mance provided by PM. That work �nds that accessing PM (based
on Intel Optane PM) remotely via RDMA can be even faster than
accessing PM locally due to the heavy-weight software overhead
involved. This is somehow counter-intuitive and it is di�erent from
prior memory disaggregation or storage disaggregation.

PilotDB [34] is a recent disaggregated database for PM disag-
gregation. It builds a disaggregated PM layer to provide a more
cost-e�ective memory layer compared to main memory disaggrega-
tion. It stores the log in the PM layer to achieve faster transaction
persistence. The main challenge in building PilotDB is the low write
bandwidth of PM. To solve this problem, PilotDB applies the idea of
log-as-the-database. Two optimizations are introduced to guarantee
e�ciency and correctness. The �rst one is compute-node-driven
logging in which the log is conducted by the compute node through
one-sided RDMA. The other optimization is optimistic page reads,
in which the compute node aggressively reads pages via one-sided
RDMA. To provide correctness guarantees, the compute node vali-
dates a page by log sequence number and replays the log locally if
the page is outdated.

3 MEMORY DISAGGREGATION
We now discuss memory disaggregation, a hardware architecture
that elevates resource disaggregation to the next level by sepa-
rating main memory from compute to accomplish the complete
compute and data decoupling. Enabling memory disaggregation
is the advancement of fast networking technologies. In particu-
lar, recent generations of RDMA achieve sub-microsecond latency
and hundreds of Gbps throughput. While this is still lower than
the performance of buses, the boundary between local and remote
machines is becoming blurred.

The �rst and perhaps the most dramatic impact of memory dis-
aggregation on database systems is about performance. Database
systems have been heavily relying on the high speed of random
accesses to main memory to achieve good performance. Memory
disaggregation means that the majority of these accesses now be-
come network communication. Managing remote memory accesses
is thus a key design challenge. The second impact is introduced by
sharing remote disaggregated memory between a large number of
compute nodes. Data consistency in disaggregated memory must
be made available for concurrent accesses from di�erent compute
nodes, which also have their own local caches. One-sided RDMA
that is often employed for e�cient remote memory accesses pushes
this responsibility back to the compute nodes. In addition, RDMA

fundamentally di�ers from socket programming and has a large
con�guration space for tuning. Hence, it is important to expose
remote memory with ease of use and high performance. Moreover,
since memory disaggregation disables fate-sharing between com-
pute and memory, reliability designs must consider partial failures.

In the rest of this section we present recent investigations on
memory disaggregation that cover these aspects. Unlike storage
disaggregation, “right” database system designs for memory disag-
gregation are still under active exploration. This is largely because
the architecture of memory disaggregation itself is fast-evolving.

3.1 OLTP Databases
A solution to building database systems on top of memory disag-
gregation is to run existing ones over transparent disaggregated
memory with the aid of the operating system, e.g., LegoOS [35]
and In�niswap [18], which provide an unmodi�ed Linux ABI for
applications to utilize disaggregated memory with no modi�ca-
tions. However, recent studies have shown that the performance
degradation of this approach o�sets the operational bene�ts of dis-
aggregation and calls for new cloud-native database designs [54, 56].
LegoBase [56] employs two-level designs to manage local and re-
mote memory and handle failures. Speci�cally, the system utilizes
the limited compute-local memory to cache pages from remote
memory pool and adopts two LRU lists (one for local cache and the
other for remote memory pool) to maximize the cache hit ratios. In
addition, it proposes a two-tier ARIES protocol to take checkpoints
to remote memory and storage respectively and allow compute
nodes to recover from remote memory for fast recovery.

The aforementioned PolarDB system has been extended to sup-
port memory disaggregationwith its serverless variant. More specif-
ically, PolarDB Serverless [11] inherits the storage-disaggregated
architecture of PolarDB but adds a remote memory layer that im-
plements an elastic bu�er pool and shares it between all compute
nodes. This shared memory pool enables several key bene�ts for
serverless workloads: memory usage is more e�cient since com-
pute nodes no longer own private bu�ers, secondary nodes have the
up-to-date view of the data without replaying logs, (re)sizing data-
base instances becomes easy and �exible, and pause/resume and
failure recovery are made faster because of compute and memory
decoupling. However, coherence and concurrency support, partial
failures, and caching must be handled carefully for the same reason.

Another line of work on database designs for memory disag-
gregation targets indexing, e.g., hash indexing [58], B-tree [43, 57],
and LSM [45]. Unlike PolarDB Serverless and LegoBase that only
support a single primary database node, these systems support
concurrent index updates from multiple compute nodes. They take
di�erent approaches to handle write con�icts. RACE hashing [58]
proposes a lock-free design to manage concurrent accesses to re-
mote hash index through RDMA compare-and-swap. It also lever-
ages one-sided RDMA to process index requests without involving
computation on the memory nodes. Recent work [57] has also
adopted a lock-based RDMA approach to extend optimistic-lock-
coupling [24] for concurrent accesses to the B-tree index in remote
memory. In comparison, Sherman [43] leverages in-order RDMA
writes to batch update operations and the SRMA on the RDMA
NIC to build two-level lock tables to handle lock contention. It also
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optimizes the index layout to reduce write ampli�cation. dLSM [45]
is an LSM-based indexing system that adopts a sharding-based
approach to supporting concurrent accesses with a suite of per-
formance optimizations, such as software overhead reduction and
remote LSM-tree compaction.

Memory disaggregation also has implications on distributed
database systems. Recent work has shown that distributed shared-
memory database, which did not receive great attention in the past,
would be more promising with disaggregated memory [44]. In par-
ticular, multiple compute nodes can share the same remote memory
pool as in recent database architectures for memory disaggregation.
However, many challenges remain. For instance, concurrency con-
trol is still challenging due to the lack of hardware-supported cache
coherence between compute nodes. It is also non-trivial to build a
distributed shared-memory layer that provides high durability and
availability with easy-to-use APIs o�ered to database applications.
We must also rethink bu�er and index management to adapt the
designs to leverage memory disaggregation because existing local
memory- or disk-oriented mechanisms are ill-suited for this new
setup [44].

Memory disaggregation has also in�uenced the designs of data-
base systems for other workloads and architectures. FlexChain [46]
separates the world state in permissioned blockchain systems with
a tiered key-value store based on disaggregated memory to over-
come imbalanced consumption of compute and memory resources
across blockchain workloads. To optimize the validation phase in
XOV blockchains that becomes the new bottleneck in the disaggre-
gated architecture, FlexChain adopts a dependency-graph-based
approach that parallelizes validations.

3.2 OLAP Databases
Memory disaggregation has more profound performance implica-
tions on OLAP workloads [23, 29, 53–55]. A visionary work [53]
�rst identi�ed the challenges and opportunities of memory disag-
gregation for OLAP database systems. It discussed the potential
bene�ts of disaggregated memory but also explained how signi�-
cant performance degradation can happen due to excessive network
communication when large working sets reside in remote mem-
ory. The authors then took a further step to evaluate the impact
of memory disaggregation on production database systems with
two representative systems (PostgreSQL, a disk-based DBMS, and
MonetDB, an in-memory DBMS) using the TPC-H benchmark [54].
Through extensive experiments, the study shows that both the bene-
�ts and overhead of memory disaggregation are substantial. On one
hand, a large disaggregated memory pool can prevent the process-
ing of memory-intensive queries from being spilled to secondary
storage. On the other hand, network communications for remote
memory accesses are con�rmed to be expensive for large queries. In
addition, this work provides insights about how to design memory
management in DBMSs for a disaggregated environment. If the
memory is managed by the application, as is the case with Mon-
etDB, some of the data can be kept in local memory. In comparison,
if memory management is delegated to the OS, as is the case with
PostgreSQL, the disk cache may be kept in the remote memory
pool where most memory resides. This design hurts performance
as cached data would still need to be moved across the network.

To overcome the overhead of memory disaggregation and un-
lock its full bene�ts, TELEPORT [55] is introduced as a new feature
for optimizing memory-hungry analytics query processing per-
formance. Speci�cally, TELEPORT is a compute pushdown frame-
work that enables DBMSs to o�oad expensive operations close
to data. It is based on disaggregated operating systems that emu-
late traditional OS interfaces to provide backward compatibility
such that current applications can immediately harvest the bene�t
of resource disaggregation. With TELEPORT, DBMSs are capable
of executing light-weight but memory-intensive operators on the
remote memory side. In doing so they eliminate expensive data
movement cost and hence achieve better query processing perfor-
mance. TELEPORT is unique in its generality and e�ciency. With
a new system call, it allows applications to o�oad arbitrary pieces
of computation by wrapping them as functions. Pushing a func-
tion down is as simple as providing the pointers of the function
and its arguments to the memory pool. This is possible because
applications’ stack, heap, and code pages all live in the memory
pool as a byproduct of disaggregated OSes. Data synchronization is
critical for TELEPORT: the compute pool caches part of the main
memory, so data copies in di�erent pools can diverge before, during,
and after pushdown. Without proper synchronization, concurrent
threads in two pools may access the same memory pages without
observing each other’s updates. TELEPORT employs e�cient syn-
chronization mechanisms to provide memory coherence. It only
synchronizes data on applications’ demands, which outperforms
application-agnostic alternatives. TELEPORT shows the necessity
of providing compute o�oading capabilities in disaggregated mem-
ory to optimize memory-intensive analytical query processing.

Farview [23] is a memory disaggregation framework that sup-
ports operator o�oading using FPGAs. It consists of three compo-
nents: a network stack, a memory stack, and an operator stack in
between. The network stack is responsible for accepting requests
from the query processing engine in the compute pool with reliable
RDMA connections, and the memory stack performs address trans-
lation and serves memory accesses with local physical memory or
pages/blocks from the storage. The operator stack, the core piece of
Farview, implements database operators (e.g., projection, selection,
groupby, and aggregation) by con�guring the memory-attached
FPGA to process the read data from the memory stack. In particular,
Farview supports pipelining in the operator stack such that DBMSs
can o�oad complex analytical sub-queries to the disaggregated
memory to minimize data movement.

Redy [51] is a new cloud service that uses stranded memory as
remote caches. It o�ers a lower-latency alternative to SSDs, using
disaggregated memory resources that would otherwise go to waste
Its use of RDMA for caching leads to two challenges. The �rst is per-
formance. Tuning RDMA requires complex, low-level optimizations
to trade o� network latency, throughput, and resource cost. Second,
stranded memory resources are highly dynamic. Their availability
can be as short as a few minutes. Redy addresses the �rst challenge
with SLO-based RDMA con�guration and the dynamic challenge
with a memory manager that migrates a cache to new stranded
memory when the old memory is reclaimed by the cloud VM allo-
cator. To further reduce cost in remote caching, CompuCache [52]
hosts cache servers with spot instances. To reduce data movement
overhead, it supports near-data processing with stored procedures
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that achieve high performance by single-round-trip o�oading with
server-side pointer-chasing.

In addition, Dremel [29] leverages disaggregated memory to de-
couple compute and intermediate shu�e state for distributed joins.
The tight coupling between these two was becoming a scalabil-
ity bottleneck in Dremel because (1) shu�es scale quadratically
with the number of producers and consumers, and (2) the coupling
introduces resource fragmentation and stranding, exacerbating re-
source underutilization in cloud data centers. To address these
issues, Dremel adopts a disaggregated intermediate shu�e layer
that improves the performance and scalability of joins by an order
of magnitude. It also signi�cantly reduces the cost of the service.

3.3 CXL for Disaggregation
So far we have been assuming that memory and compute servers
are connected via RDMA. However, there is still a noticeable per-
formance gap between local memory and RDMA-accessible remote
memory. Compute Express Link (CXL) [39] recently emerged as a
promising interconnect technology that is faster than RDMA and
thus achieves closer performance to that of local memory. CXL is an
open industry standard that provides fast interconnections between
host processors, accelerators, and I/O devices with cache coherence.
Recent studies show that CXL can be adopted for e�cient resource
disaggregation [5, 17, 28].

Ahn et al. [5] investigated the impact of CXL on main memory
databases, speci�cally Type 3 CXL devices using the CXL.memory
protocol for memory expansion. Similar to persistent memory, there
are two approaches to utilizing CXL memory devices in database
systems. First, CXL-connected memory can be treated the same as
host local memory with a uni�ed memory space. This approach
requires no application modi�cations. However, it incurs perfor-
mance degradation because of the performance di�erence between
CXL and local memory. The other approach is to distinguish CXL
memory from local memory such that database systems can explic-
itly manage data between the two tiers to tune performance. The
authors took the latter, i.e., using local memory for delta storage and
operational data and CXL memory for main storage in SAP HANA.
They evaluated the performance drop due to CXL-based memory
disaggregation using TPC-C and TPC-DS. The preliminary results
show that there is virtually no performance drop on TPC-C due to
prefetching, but there is 7% to 27% performance drop on TPC-DS.
More sophisticated evaluation and analysis are left to future work.

DirectCXL [17] is a disaggregated memory solution based on
CXL and FPGA. It provides a transparent programming environ-
ment that uni�es local and CXL memory without changing applica-
tions. Compared to RDMA, it improves the raw latency by 6.2⇥ and
the performance of real applications by 3⇥. Pond [27] is a cloud
memory pooling framework using CXL. There are two key insights
behind its designs: (1) pooling memory across a small number of
sockets su�ces to improve memory utilization, and (2) machine
learning models can predict how to allocate local and remote mem-
ory to VMs to minimize performance disruption. To reduce pooling
overhead, the framework places the memory of workloads that are
less latency-sensitive and memory that is likely untouched by VMs
in the remote CXL memory pool.

4 FUTURE DIRECTIONS
Comprehensive performance evaluation of disaggregated
databases. Given di�erent hardware platforms (e.g., RDMA and
CXL), di�erent workloads (e.g., OLTP, OLAP, and HTAP), and dif-
ferent forms of disaggregation (e.g., memory and storage disaggre-
gation), having an experimental platform that integrates all these
ingredients and supports extensive performance evaluation of data-
base systems on resource disaggregation would be helpful for future
investigations on disaggregated database designs.
Scalable transactions in disaggregated databases. Existing
cloud databases usually have a single compute node that processes
writeworkloads, with other nodes only processing read-only queries.
It is interesting to support multiple writers to improve write scala-
bility, which would be more feasible with memory disaggregation
and distributed shared-memory databases.
Automatic resource provisioning. As the clouds are becoming
increasingly disaggregated, it is critical to investigate automatic
resource provisioning to decide the right amount of resources for
di�erent applications. Recent advances in machine learning tech-
niques can be leveraged for this problem.
CXL-optimized databases.CXL is projected to bewidely available
in 2023, and di�erent generations of CXL have di�erent properties.
However, it remains unclear how this new interconnect will change
the architectures of di�erent disaggregated database systems.
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