
Memory-disaggregated 
DBMSs

Qizhen Zhang

University of Toronto



Outline

• Introduction to memory disaggregation

• Performance implications for DBMSs

• Memory-disaggregated transactional systems

• Memory-disaggregated analytical systems

• CXL-based memory disaggregation

• Future directions

2



DirectCXL [ATC 22]

TELEPORT [SIGMOD 22]

LegoBase [VLDB 21]

Covered Work

3

Transactions

Analytics

CXL

Understanding the effect on production DBMSs [VLDB 20] Implications



Introduction to 
memory disaggregation 

4



Storage Disaggregation

• Separating compute and storage

5

Data center 
network

Compute servers

MC

Storage servers

SS



Storage Disaggregation

• Separating compute and storage

• Compute and memory are still coupled
• Inflexible compute and memory allocation
• Limited memory elasticity
• Slow recovery on compute server failures

6

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
Percentage of Memory [%]

C
um

ul
at

ive
 D

is
tri

bu
tio

n

Not allocated
Neither allocated
 nor used Unused memory in Azure

Translated to hardware cost



Memory Disaggregation

• Separate compute, memory, and storage into 
resource pools that are connected by a fast network

7

M
M

M
M

S
S

S
S

C
ac
he

C
on
tr
ol
le
r

C
on
tr
ol
le
r

C
C

C
C

Compute pool Memory pool

Storage pool

Fast network



Memory Disaggregation

• Separate compute, memory, and storage into 
resource pools that are connected by a fast network

• Complete compute and data decoupling

8



Operational Benefits

• Independent failures

9

Network

CPU

RAM

SSD

✖ CPU



Operational Benefits

• Independent failures
• Independent expansion

10

C

M

S

Network

More memory



Operational Benefits

• Independent failures
• Independent expansion
• Independent allocation

11

Network

C1

M1

S1

C1

M1

S1

C2

M2

S2

VM1 VM2

C2

M2

S2

Physical resource pools



Enabling Technique: RDMA

• Remote Direct Memory Access

12

App
RDMA

NIC

Mem

CPU

Send Queue

Recv Queue

Queue Pair

RDMA

NIC

2-sided

1-sided

Client Machine Server Machine

Good fit
• Low CPU utilization
• High network speed



Types of Memory Disaggregation

• Kernel-space approaches

13

Remote

memory

PagingOS

Page fault, 
swapping

Pros
• Unmodified applications
• Transparent infra evolution

Cons
• High performance cost
• High development cost

App



Types of Memory Disaggregation

• User-space approaches

14

Remote

memory

RM Lib

OS

Pros
• No kernel overhead
• Fine-grained control
• Customized optimizations

Cons
• Application modifications

App



Implications for DBMSs

• Performance overhead
• Memory access becoming network communication

• Data consistency
• Consistent and concurrent remote memory access

• Remote memory abstraction
• Offering remote memory with RDMA

• Reliability
• Partial failures of compute and memory

15



Performance Implications 
for DBMSs

16



Covered Work

17

Understanding the effect on production DBMSs [VLDB 20] Implications



Methodology of Study

18

• Evaluate production DBMSs
• MonetDB

• PostgreSQL

in a real cluster
• Inifiniband network

• LegoOS

with complex queries
• All 22 TPC-H queries

MonetDB PostgreSQL

Execution In-memory Out-of-core

Storage Column-based Row-based

Architecture Client/Server Client/Server

Buffer Pool 
Size

min(Capacity, 
Demand)

Customizable

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q. Zhang et al., VLDB 2020

Xeon E5-2450
(8 cores, 2.1GHz)

16GB RAM

500GB HDD

56 Gbps InfinibandTestbed

LegoOS [OSDI 2018]



Disaggregation Cost

19

• What is the cost of memory disaggregation for complex queries?

• Evaluate DBMS performance slowdown in a disaggregated OS 
compared to Linux with the same hardware capacity
• In-memory execution
• Cold out-of-core execution (disk I/O involved)
• Hot out-of-core execution (data cached)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q. Zhang et al., VLDB 2020



Cost for In-memory Execution

20

• MonetDB

LegoOS (low degree of disaggregation) LegoOS (high degree of disaggregation*)

1.7x slowdown 18x slowdown

Findings
1. This confirms the cost of disaggregation for complex queries
2. The cost increases with the degree of disaggregation
3. The slowdown can be higher than 100x

*low local memory 
size on compute node 

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q. Zhang et al., VLDB 2020



Cost for Out-of-core Execution

21

• PostgreSQL (cold, disk I/O is involved)

LegoOS (low degree of disaggregation)

1.08x slowdown

Finding - most queries experience no cost from disaggregation

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q. Zhang et al., VLDB 2020



Cost for Out-of-core Execution

22

• PostgreSQL (hot, data is cached)

LegoOS (low degree of disaggregation)

2x slowdown

Findings
1. Hot execution has higher cost than cold execution
2. The slowdown is even higher than in-memory execution (1.7x)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q. Zhang et al., VLDB 2020



Summary of Disaggregation Cost

• In-memory execution
• Moderate if working set fits into compute-local memory
• Significant, otherwise

• Out-of-core execution
• Dominated by other factors (disk I/O, cache design, etc.), 

and thus less sensitive to (the degree of) disaggregation

23Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q. Zhang et al., VLDB 2020



Another Perspective: Elasticity

24

• Consolidates the same type of resources

• Provides the opportunity of DBMSs using “infinite” resources 
without any application modifications

Data Center
Interconnect

C

C

M

M

S S

Compute Pool Memory Pool

Storage Pool

C

M

S

Monolithic Server

>> spill to disk

spill to memory pool

The difference can be huge (an order of magnitude)

Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs

Q. Zhang et al., VLDB 2020



Memory-disaggregated 
transactional systems

25



LegoBase [VLDB 21]

Covered Work

26

Transactions



LegoBase

27Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

A transactional DB design for memory disaggregation 
with tiered memory management and recovery



LegoBase

28Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

Compute node Memory cluster

SQL engine (MySQL)

Local buffer 
manager

Remote buffer 
agent 

Light fault 
tolerance 
daemon

Read Write
Remote 
buffer 

manager

Remote 
buffer pool

Heavy fault tolerance 
daemon

Persistent shared storage

Read

Flush

Read Read/Write Log Flush

Primary contributions
• Moves memory management back to DBMS
• Provides a two-tier fault tolerance protocol



Memory Management Motivation

• Existing memory disaggregation has been OS-based

• Infiniswap [NSDI 17], LegoOS [OSDI 18]

• Issue #1: OS overhead on remote memory access

• 4KB page transfer: 4-6 µs RDMA vs. 40 µs Infiniswap

29Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021



Memory Management Motivation

• Existing memory disaggregation has been OS-based

• Infiniswap [NSDI 17], LegoOS [OSDI 18]

• Issue #2: low cache hit ratios with unified memory

• Small but important data might be evicted, e.g., session info

• OS LRU is less effective than DB-optimized LRU

• Page size mismatch: 4KB in OS vs. 16KB in DBMS

30Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021



Splitting Buffer Pool

Local Buffer Pool (LBP) vs. Remote Buffer Pool (RBP)

• LBP is a cache of RBP

31Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 

Allocator

Remote Page 

Allocator



Page Organization

Every page has a meta frame

• Page id, local address, and remote address

32Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 

Allocator

Remote Page 

Allocator

id

Meta Frame



Page Organization

Two LRU lists of meta frames on the compute node

• LRU_LBP: MySQL-style LRU for local pages

• LRU_RBP: caching remote address for evicted pages

33Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 

Allocator

Remote Page 

Allocator

LRU_LBP

LRU_RBP



Page Lookup

Locating pages with hash lookups

• PHASH_LBP: pointing to the locations in the two LRU lists

• PHASH_RBP: pointing to local pages

34Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 

Allocator

Remote Page 

Allocator

id location 

PHASH_LBP

… …

id location 

PHASH_RBP

… …



User-space Paging

Direct RDMA access from compute to memory

• Register and DeRegister: BP cache misses and evictions

• Read and Flush: compute cache misses and evictions

35Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

Compute node Memory node

LBP (predefined) RBP (configured per DB)

…
Local Page 

Allocator

Remote Page 

Allocator

id location 

PHASH_LBP

… …

id location 

PHASH_RBP

… …

RDMA



Result (TPC-C)

LegoBase outperforms Infiniswap

• Up to 2× on throughput and 2.3× on tail latency (p99)

36Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021



Result (TPC-H)

LegoBase query latency is close to monolithic MySQL

• But can be 2× higher for memory-intensive queries

37Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021



Fault Tolerance Motivation

• Independent compute-memory failures introduce 

recovery opportunities

• States saved in memory can speed up compute recovery

38Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

3.9× faster recovery

5.5× faster BP warm-up



Two-tier ARIES

39Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

Local buffer pool (LBP) Remote buffer pool (RBP)

…

Transaction manager

FLUSH_LBP

Log buffer

LFT Daemon

Checkpoints FLUSH_RBP

HFT Daemon

Compute Memory

Storage
WAL Checkpoints Data

1

2

3

4

5 6
7

8

9

10
11

12

13commit

• Read the paper to figure this out
• Most importantly, data is checkpointed to memory



If Compute Fails...

40Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

• Recover fast from tier-1 checkpoints

Remote buffer pool (RBP)

…

Checkpoints

Compute Memory

Storage
WAL Checkpoints Data

LFT Daemon

LRU_LBP

1. Connect

2. Read

3. Traverse & Apply



If Both Fail...

41Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021

• Recover slowly from tier-2 checkpoints

Remote buffer pool (RBP)

…

Compute Memory

Storage
WAL Checkpoints Data

LRU_LBP

LRU_RBP



Result

Recovery time
• 50s for MySQL and LegoBase from tier-2
• 2s for LegoBase from tier-1

42Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021



Summary

• MySQL customized for disaggregated memory

• DBMS-optimized memory management removes OS 
overhead and achieves more effective caching

• Two-tier fault tolerance leverages failure 
independence for fast recovery

43Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation

Y. Zhang et al., VLDB 2021



Other Recent Work

• PolarDB Serverless [SIGMOD 21]: multi-compute

• Sherman [SIGMOD 22]: B+tree optimized for writes

• FlexChain [VLDB 23]: an XOV blockchain design

• dLSM [ICDE 23]: LSM indexing

• DSM-DB [VLDB 23]: distributed shared-memory DB

44



Memory-disaggregated 
analytical systems

45



TELEPORT [SIGMOD 22]

Covered Work

46

Analytics



TELEPORT

47Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022

A compute pushdown framework that moves 
operators from compute to memory



In-memory Query Performance

48

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

Monolithic

11.5s

Memory 
disaggregated

661s

TELEPORT
(scale-out)

22.7s

57×
Scale-out cost

Can we remove most of this 
high “cost of disaggregation” 
to unlock all its benefits?

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



0.1

1

10

100

1000

Projection Hash MergeJoin Expression Selection

Ex
ec

ut
io

n 
tim

e 
(s

)

Single server Baseline DDC

TELEPORT Motivation

49

189 
GB 87 

GB

Execute them in the memory pool 
to remove data movements

Compute pushdown

Monolithic Memory-disaggregated

Monolithic vs. memory-disaggregated
MonetDB with TPC-H scale factor 50 (query 9)

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



TELEPORT Overview

• Compute pushdown framework for memory disaggregation

50

C
a

c
h

e

C
o

n
t
r
o

l
l
e

r

Compute pool Memory pool

TELEPORT (OS)

In-mem 
data

Data processing workers Data processing states

1. Provide simple and 
general interface

2. Execute arbitrary 
operators fast

3. Guarantee memory 
consistency

operator operator

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Compute Pushdown Interface

• System call: pushdown(fn, arg, flags)

51

Function pointer
Argument pointer

Customization

void agg(table *input_table, double *result) {
// implementation of aggregation

}

void main() {
//...
agg(t, r);

}

void agg(table *input_table, double *result) {
// implementation of aggregation

}

struct agg_arg {
table *input_table;
double *result;

};

void fn(void *arg) {
// execute the operator

}

void main() {
//...
struct agg_arg *arg;
// contruct arg
pushdown(fn, arg, flags);

}

Define 
argument

Define 
function

Execute 
pushdown

TELEPORT

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Compute Pushdown Interface

• System call: pushdown(fn, arg, flags)

• Ported MonetDB (in-memory DBMS, 400,000 lines in total)
• Projection, 117 lines
• Aggregation, 214 lines
• Selection, 302 lines
• Hash, 75 lines

As well as PowerGraph (graph processing) and Phoenix (MapReduce)

52

To unlock all disaggregation benefits

!
Function pointer

Argument pointer
Customization

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Memory Pool Execution

• Arbitrary and fast function execution

• Akin to POSIX vfork

53

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

Entire virtual memory space 
(text segment, stack, heap)

fn(arg)

Fast network

Limit the number of contexts

Compute pool Memory pool

Page table 

Temporary context

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Data Synchronization

• Memory consistency between compute and memory

• Inconsistent time points:

• Without proper synchronization, pushdown may be executed incorrectly

54

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA B

Compute-local cache

before pushdown during pushdownafter pushdown

B C D

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Baseline Approach

• Evict all local pages and push down all threads in the same process

• Performance issues
• Not all compute-local pages are accessed in pushdown
• Overwhelm memory pool’s limited compute resource

55

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA B

Compute-local cache

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



On-demand Coherence Protocol

• Synchronize pages only when they are needed

• Invariant: only one writable copy of a page between pools at 
any moment

56

pushdown(fn, arg, flags)

TELEPORT (compute) TELEPORT (memory)

fn(arg)

…

Compute pool Memory pool

A B C DA BA

Compute-local cache

A, B
List of pages

A, B

A, B are removed
Page fault

× ×B

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Evaluation Setup

• Compute: 8 CPU cores (16 threads) with 1 GB local cache

• Memory: 128 GB memory with 2 cores for pushdown

• Storage: 1 TB SSD

• Connected by an InfiniBand network: 56 Gbps bandwidth and 
1.2 "s latency

57Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



TELEPORT Minimizes Overhead

58

Monolithic

11.5s

Baseline memory 
disaggregation

661s

TELEPORT

22.7s

29×
Vertica (distributed): 2.3×

Baseline: 57×
Scale-out cost 1.97×

TELEPORT removes most of the “cost of disaggregation”

MonetDB with TPC-H scale factor 50 (query 9)

Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Summary

• Memory disaggregation lacks good support for data-intensive 
applications, such as data analytics systems

• TELEPORT enables general and fast compute pushdown

• Distributing operators between compute and memory must 
take care of data consistency

59Optimizing Data-intensive Systems in Disaggregated Data Centers with TELEPORT

Q. Zhang et al., SIGMOD 2022



Other Recent Work

• Google Big Query [VLDB 20]: large-scale shuffling 

through disaggregated memory

• Redy [VLDB 22]: utilizing stranded memory in cloud data 

centers as remote cache

• Farview [CIDR 22]: compute offloading with FPGAs for 

disaggregated memory

60



CXL-based
memory disaggregation

61



DirextCXL [ATC 22]

Covered Work

62

CXL



DirectCXL

63Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

An alternative approach to disaggregating memory 
using CXL



Motivation: RDMA Cost

64Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

• Data is copied over the network
• Network latency
• DMA operations on both sides

• Data is copied between applications and NIC-
registered memory regions



Compute eXpress Link (CXL)

65Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

• Cache-coherent interconnects for connectivity 
between CPUs, accelerators, and I/O devices

• Supports all devices, from accelerators to memory
• Type 1: device accessing host memory
• Type 2: device and host accessing each other's memory
• Type 3: host accessing device memory



Compared to RDMA

66Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

Direct PCIe access through load/store instructions
• No network latency
• No extra data copies



Memory Disaggregation with CXL

67Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

• How to enable direct access to CXL memory?
• How to enable flexible memory configuration?
• How to present CXL memory to applications?

CXL memory

CPU

CXL memory

CPU

App

CXL memory



DirextCXL Design

68Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

How to enable direct access to CXL memory?
• Convert load and store instructions to CXL packets
• An FPGA-based controller converts them back

CPUApp

Load/store

DRAM
Memory 

controller

Load/storeCXL packets

Compute blade Memory bladePCIe



DirextCXL Design

69Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

How to enable flexible memory configuration?
• A CXL switch with a reconfigurable crossbar

CPU

CXL memory

CPU

CXL memory

CXL memory

CXL Switch

PCIe PCIe



DirextCXL Design

70Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

How to present CXL memory to applications?
• Leveraging Linux virtual memory system

Compute blade

App CXL memory
CXL device 

driver
Character 

device driver
ioctl()

mmap()

PCIe



Result on Real Workloads

71Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

• DirectCXL outperforms RDMA
• 3× faster than kernel-space RDMA (Swap)
• 2.2× faster than user-space RDMA (KVS)



Summary

72Direct Access, High-Performance Memory Disaggregation with DirectCXL

D. Gouk et al., ATC 2022

• RDMA-based memory disaggregation incurs 
networking overhead and extra memory copies

• DirectCXL provides a CXL solution via direct PCIe 
access, a CXL switch, and a software runtime

• Application performance is significantly improved 
without modifications, showing CXL potentials



Other Recent Work

• SAP HANA on CXL-expanded memory [DaMon 22]: 

evaluating in-memory database system performance 

with CXL as the storage backend

• Active area in systems and architecture communities

73



Future directions of 
disaggregated DBMSs

74



Future Directions

• Comprehensive performance evaluation of 
disaggregated databases

• Scalable transactions in disaggregated databases

• Automatic resource provisioning

• CXL-optimized databases

75



Q & A

76


