
161

Using Cloud Functions as Accelerator for Elastic Data
Analytics
HAOQIONG BIAN, EPFL, Switzerland
TIANNAN SHA, EPFL, Switzerland
ANASTASIA AILAMAKI, EPFL, Switzerland

Cloud function (CF) services, such as AWS Lambda, have been applied as the new computing infrastructure
in implementing analytical query engines. For bursty and sparse workloads, CF-based query engine is more
elastic than the traditional query engines running in servers, i.e., virtual machines (VMs), and might provide
a higher performance/price ratio. However, it is still controversial whether CF services are good suites for
general analytical workloads, in respect of the limitations of CFs in storage, network, and lifetime, as well as
the much higher resource unit prices than VMs.

In this paper, we first present micro-benchmark evaluations of the features of CF and VM. We reveal that for
query processing, though CF is more elastic than VM, it is less scalable and is more expensive for continuous
workloads. Then, to get the best of both worlds, we propose Pixels-Turbo - a hybrid query engine that processes
queries in a scalable VM cluster by default and invokes CFs to accelerate the processing of unpredictable
workload spikes. In the query engine, we propose several optimizations to improve the performance and
scalability of the CF-based operators and a cost-based optimizer to select the appropriate algorithm and
parallelism for the physical query plan. Evaluations on TPC-H and real-world workload show that our query
engine has a 1-2 orders of magnitude higher performance/price ratio than state-of-the-art serverless query
engines for sustained workloads while not compromising the elasticity for workload spikes.

CCS Concepts: • Information systems → Data warehouses; Online analytical processing engines;
DBMS engine architectures; Relational parallel and distributed DBMSs; MapReduce-based systems;
Data analytics; Database query processing; Cloud based storage; Column based storage; Record and
block layout; Computing platforms; • Computer systems organization→ Cloud computing.

Additional Key Words and Phrases: OLAP, QaaS, serverless, query processing, query optimization, cloud
databases, data lake, data warehouse, FaaS, cloud function, column store, cloud storage, elasticity, cost efficiency

ACM Reference Format:
Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki. 2023. Using Cloud Functions as Accelerator for Elastic
Data Analytics. Proc. ACM Manag. Data 1, 2, Article 161 (June 2023), 27 pages. https://doi.org/10.1145/3589306

1 INTRODUCTION
Cloud function (CF) service, or function-as-a-service (FaaS), is a category of cloud computing
services that allows the developers to run their program as auto-scaling and short-lived function
instances in the cloud. It has a very short startup time (e.g., 1-2 seconds to start an instance) and very
high elasticity (e.g., spawns hundreds of parallel instances in a second). Therefore, it is now widely
used in microservices and data processing. Recent systems, such as Starling [66] and Lambada [65],
proposed solutions to implement an analytical query engine purely based on CFs. Benefiting from

Authors’ addresses: Haoqiong Bian, EPFL, Lausanne, Switzerland, haoqiong.bian@epfl.ch; Tiannan Sha, EPFL, Lausanne,
Switzerland, tiannan.sha@epfl.ch; Anastasia Ailamaki, EPFL, Lausanne, Switzerland, anastasia.ailamaki@epfl.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/6-ART161 $15.00
https://doi.org/10.1145/3589306

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0001-5144-4427
HTTPS://ORCID.ORG/0009-0004-7652-0157
HTTPS://ORCID.ORG/0000-0002-9949-3639
https://doi.org/10.1145/3589306
https://orcid.org/0000-0001-5144-4427
https://orcid.org/0009-0004-7652-0157
https://orcid.org/0000-0002-9949-3639
https://doi.org/10.1145/3589306
https://www.acm.org/publications/policies/artifact-review-and-badging-current

161:2 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

Table 1. Resource unit prices in AWS (as of September 2022).

Resource type Lambda EC2 on-demand EC2 spot

CPU (¢/core-h) 10 4.8 1.1
RAM (¢/GB-h) 6 1.2 0.27

Network (¢/Gbps-h) 85.71 15.36 3.53

Fig. 1. Illustration of the monetary cost of different query engines under the same workload and performance.

the elasticity and simplicity of CF, a pure CF-based query engine can scale to zero (except for a
small coordinator) and greatly reduce the maintenance cost of the system.
However, elasticity and simplicity come at the price of ceding the control of the hardware and

runtime to the cloud providers. In order to efficiently automate the resource scheduling, cloud
providers have added some restrictions to CF, including limited size (e.g., up to 10GB RAM and 6
vCPUs per instance), no persistent local disk, and no inter-instance communications [69]. Therefore,
cloud storage such as S3 is used to store the tables and intermediate results for query processing.
For example, in Starling [66] and Lambada [65], to execute a hash-partitioned join, the tables have
to be partially partitioned and written into S3 by the first stage of CF invocations, and then the
intermediate partitioned files in S3 are read by the next stage to complete the join. This introduces
significant I/O overhead and hinders the parallelism of CPU and network.

Moreover, the unit prices of the resources in CFs are higher since the cloud provider has to pay
more scheduling and provisioning costs on their side. As shown in Table 1, in AWS, the resource unit
prices of CF (i.e., Lambda [15]) are 9.09-24.28x higher than those of VM (i.e., EC2 spot instances [5] 1).
In this example, we use the instance type m5.8xlarge for EC2 on-demand [4] and EC2 spot, and
10GB RAM size configuration for Lambda (which has ≈0.7Gbps network bandwidth [64]). CF and
VM services prices in other major public clouds, such as Azure and Google Cloud, are very close to
those in AWS.

For analytical processing, the key advantage of CF is better elasticity. In our evaluations, it takes
only 1-2 seconds to startup hundreds of AWS Lambda instances, whereas launching a new EC2 VM
takes about one minute. Therefore CF is appropriate for processing bursty and sparse workloads [65,
66], whereas VM is more appropriate for stable and continuous workloads. However, continuous
workloads with peak hours and spikes are general in today’s analytical applications [46, 50, 70, 71].
Neither CF nor VM is the clear winner for such type of workload.

In this paper, to achieve a better performance/price ratio in all conditions, we propose Pixels-Turbo
- a hybrid query engine that uses CFs as the auxiliary computing resource to process unpredictable

1Spot VM (e.g., EC2 spot) is a kind of VM available at a 70-90% discount compared to normal on-demand VMs. It could
be reclaimed by the cloud provider given a grace period, which is tolerable to modern query engines such as Spark and
Trino [38, 74]. The reclaim rate of spot VMs is very low. In major cloud platforms, the expectation of a spot VM being
reclaimed within a month is usually below 10% [12, 16].

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:3

workload spikes. Pixels-Turbo executes the queries in an MPP (massively parallel processing) cluster
by default. The cluster is automatically scaled according to workload changes. However, scaling out
the cluster usually takes 1-2 minutes. If the workload bursts sharply, the cluster can not scale out
in time to process the spike. In this case, Pixels-Turbo invokes CFs to accelerate query processing
before the cluster scaling is done. We implement Pixels-Turbo as the query engine in Pixels [45]
and open-sourced it on GitHub (https://github.com/pixelsdb/pixels/tree/master/pixels-turbo).
The benefit of our query processing solution in Pixels-Turbo is illustrated in Figure 1. Given

a query workload that changes over time: an ideal (but impractical) query engine would use the
cheapest VMs and scale perfectly for the workload changes; a provisioned MPP query engine has to
provision the VMs for the maximum requirement; a pure CF-based query engine executes queries
in CFs, which can scale perfectly for workload changes but may be much more expensive than VMs.
Our hybrid solution combines the advantages of both CF and VM. When the workload suddenly
bursts, CFs get involved in processing some of the queries (at 𝑡1, 𝑡2, and 𝑡6). After a couple of
minutes, the VM cluster scales to the capable size and reduces the cost. In our solution, we release
the VMs lazily, thus the cost reduction lags a bit behind the workload reduction (at 𝑡3, 𝑡4, 𝑡5, and
𝑡7). We also use spot VMs in the cluster to improve cost efficiency further.

This solution has to automatically scale the MPP cluster and tolerate spot VM reclaiming without
interrupting queries. To address this problem, we propose a framework that monitors the workload
and triggers actions to add or remove VMs gracefully. When a new VM is created, a script in the
OS image automatically initializes the software stack and adds the VM into the cluster. When a VM
is to be terminated or reclaimed, a daemon process in the VM calls the graceful-shutdown API [38]
to wait for the running query tasks and then remove the VM from the cluster.
In addition to auto-scaling, we have to divert the workload spikes to CFs transparently. In

Pixels-Turbo, the queries to be executed in the VMs or the CFs have separate query queues. A query
enters the CF query queue only when the VM query queue is full. We implement a secondary query
executor that can fully execute operations such as select, projection, join, and aggregation in the
CFs. Thus, for the query in the CF query queue, expensive operations in the query plan will be
pushed down into a sub-plan that is executed by the CF-based executor.
Meanwhile, improving the CF-based query performance is crucial as CF has more restrictions

and overheads. Otherwise, users may suffer from poor performance when the CF executor is in use.
To address this problem, we propose a set of optimizations for the CF-based query executor: (1)
direct-write-back that directly returns the sub-plan result to the cluster; (2) chain-join that merges
sequential broadcast joins into fewer stages to reduce the amount of intermediate I/Os in joins; (3)
early-projection that purges redundant columns in data shuffling; (4) late-shuffling that postpones
shuffling to reduce the amount of data to shuffle in aggregations. We also propose a cost-based
optimizer to select the best algorithm and parallelism for each query operator in the sub-plan.

In summary, the main contributions of this paper are:

• We analyze the pros and cons of CF and VM by micro-benchmarks. Based on the insights,
we propose the query engine Pixels-Turbo that uses CF as the accelerator for processing
unpredictable workload spikes, thus providing a high performance/price ratio without com-
promising elasticity (Section 3).

• To address the intermediate I/O bottleneck when CFs get involved in query processing, we
propose optimizations to reduce the amount of intermediate I/Os in joins, aggregations, and
result returning (Section 4).

• We propose a cost-based optimizer to select the appropriate algorithm and parallelism for
the CF-based query plan. To the best of our knowledge, this is the first work that provides a
cost-based optimizer for SQL-style jobs in CFs (Section 5).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:4 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

• Evaluations on TPC-H and real-world workload show that Pixels-Turbo can provide 1-2 orders
of magnitude higher performance/price ratio than state-of-the-art serverless query engines
from industry (Athena [47] and Redshift-serverless [7, 43]) and academia (Starling [66])
for sustained workloads, while not compromising the elasticity for unpredictable workload
spikes (Section 6).

2 PRELIMINARIES
In this section, we briefly introduce how data is managed and queried in today’s cloud data lakes
and serverless query services and how cloud functions are used in serverless query processing.

2.1 Cloud Data Lakes
In today’s cloud data lakes, storage and query execution are decoupled [45]. The query engines,
such as Trino/Presto [36, 70] and Spark SQL [42], are responsible for executing queries. Whereas
the tables are stored as a set of raw files with a specific format in cloud storage services such as
AWS S3 [8]. Each raw file contains a horizontal partition, a.k.a., row group, of the table.

In a real-world deployment, the catalog of the raw files and the metadata of the tables (e.g.,
schema and statistics) are often maintained by a table management system, such as Delta [63]
and AWS Glue [14]. Some table management systems also support caching, DML, and schema
evolution [9, 10, 63]. They actually act as a kind of lightweight storage engines based on open file
formats.

The query engines do not persist any data or metadata, thus they are highly scalable. They provide
similar APIs named connector or data source for external storage [36, 42, 45]. Third-party table
management systems or storage engines can be integrated into the query engine by implementing
their own connectors. The connector provides metadata to the query engine for query parsing and
optimization. During query execution, each query task in the query engine calls the connector to
scan a split (i.e., a set of row groups) from the table. The other operations (e.g., join, aggregation,
and ordering) in the query plan are executed on the scan result.

To reduce the amount of data fetched from the connector, most query engines support operation
pushdown [26, 32, 39]. Projection and selection can be easily pushed down into the connector with
the other table scan parameters such as schema and table names. However, pushing down other
operations such as join and aggregation is more complicated. In Trino, this is done by creating a
logical temporary table for the operation [39]. Then the connector, instead of the query engine,
is responsible for executing the operation and returning the result to the query engine. In Spark,
aggregation and limit operation pushdown are supported in a similar way [31]. Besides operation
pushdown, a very promising technology called compressed data direct computing [76] has been
proposed to reduce both time and space costs, and has been proven to be successfully applied in
distributed and heterogeneous environments [75].

2.2 ServerlessQuery Services
Traditionally, cloud users have to purchase and maintain a provisioned VM cluster to run queries.
The maintenance cost may take a large portion of the total cost of ownership (TCO) of a data lake.
In recent years, many cloud providers developed serverless query services to address this problem.
Examples are AWS Athena [47], Google BigQuery [22], and Azure Analysis Services [17]. Using
these services, users only need to pay for the executed queries.
Under the hood, the queries are executed in a shared cluster, where the serverful query engine

still exists. For example, BigQuery executes queries in a Dremel cluster [19, 62], whereas Athena
executes queries in a customized Presto cluster [47]. The cloud provider maintains the cluster on

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:5

(a) Starling shuffle. (b) MapReduce shuffle.

Fig. 2. Shuffle operator in Starling and MapReduce.

behalf of the users and only exposes the query interface. Some traditional query engines, such
as Redshift, are also evolving their architectures following the serverless paradigm [43]. Redshift-
serverless [7] is the new serverless architecture of Redshift. It automatically scales the query to a
cluster of small servers named Redshift Processing Units (RPUs) and charges the customer by the
number of RPU-seconds used on the queries. One RPU provides 16 GB of memory [27].

2.3 Cloud Functions
Cloud function (CF) is a category of serverless computing service in the cloud. Developers implement
a function in a programming language of choice and upload it to the cloud. The function can be
invoked by programs or events and used as an alternative to virtual machines (VMs) in data
processing applications. The main difference between CF and VM is: (1) CF has a limited size, e.g.,
up to 10GB RAM and 6 vCPUs; (2) CF is short-lived, e.g., up to 15 minutes; (3) CF does not have
persistent local disks or network connections between instances; (4) CF has a very short startup
time, e.g., 1-2 seconds, and very high elasticity, e.g., spawning hundreds of instances per second. (5)
CF is billed on a per invocation basis according to the size (RAM or CPU) and execution duration,
e.g., $1.667 × 10−5 per GB-RAM per second.

2.4 Query Processing in Cloud Functions
As discussed in Section 2.3, the computing infrastructures of commercial serverless query services
lack generality and are not open to the research community. Therefore, cloud function (CF) attracts
more attention in the research on serverless query processing [55, 61, 65–67].

Query processing in CFs is similar to that in MapReduce [54, 55]. For example, Figure 2 shows the
shuffle operator in Starling [66] (a state-of-the-art serverless query engine based on AWS Lambda) 2
and MapReduce [51]. In either system, shuffle consists of a producer (mapper) stage to produce a
partitioned file for each input split, an optional combiner stage to partially merge the partitioned
files, and a consumer (reducer) stage to generate the final output. The processing unit (blue squares
2The shuffle implementation in Starling is a typical example of CF-based shuffle. The multi-level exchange (shuffle) operator
in another recent CF-based query engine Lambada [65] is equivalent to Starling’s shuffle with combiners.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:6 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

in Figure 2) in either shuffle operator is a function instance executed in a container or process. The
main difference is in data locality. In MapReduce, the mapper can be scheduled to where the data
is located; and mappers and combiners can be executed in the same server without remote I/O.
Whereas in CFs, all stages must be synchronized through the cloud storage (e.g., S3) as there is no
direct connection between CF instances.

In the past decade, MapReduce has been proved inefficient for query processing [42, 49, 70, 72].
Therefore, memory-optimized MapReduce variants (e.g., Spark [74] and Tez [68]) and lightweight
MPP engines (e.g., Presto/Trino [70], Hawq [48], and Impala [58]) are designed to replace the
ordinary MapReduce in data lakes. Intuitively, as an analogue of MapReduce with even more
limitations, CF is neither an efficient option for query processing. In Section 3.1, we use experimental
results to support this intuition.

Some existing works tried to improve the query performance in CFs. Sonic [61] reduces the cloud
storage I/O overhead by shuffling data through VMs, whereas Boxer [64] uses NAT hole-punching
to enable network connection between CF instances. However, these solutions either sacrifice the
elasticity of CFs or are not officially permitted by the cloud providers and therefore have stability
issues. To improve the I/O efficiency, Starling [66] employs parallel reads to improve the read
throughput and a retry policy to mitigate the I/O stragglers. However, these methods are also
proved effective in VMs [45]. Therefore, it does not help bridge the performance gap between
CF-based and VM-based query processing.

For query processing, the key advantage of CFs is their higher elasticity. We can start hundreds
or even thousands of CF instances in a couple of seconds. These instances will be automatically
released after invocation. For bursty and sparse workloads, CFs may be more cost-efficient than
VMs [65, 66].

3 MOTIVATION AND DESIGN
The scalability and cost-efficiency of a cloud-native query engine highly depend on the underlying
computing services. In this section, we first present micro-benchmark evaluations of the scalability
and cost-efficiency of cloud computing services. Then we introduce the overview and design choices
in Pixels-Turbo that are motivated by the insights from the experimental study.
We consider cloud function (CF) and virtual machine (VM) as the two major types of cloud

computing services in this paper and use AWS Lambda and AWS EC2 as the representatives of CF
services and VM services, respectively. There are also some container services in the cloud, such as
AWS ECS and Azure Containers. However, for query processing, there is no significant difference
between containers and VMs.

3.1 Scalability of Computing Services
Scalability is important for query processing. As the data volume increases, a scalable query
engine should be able to keep the query performance by adding additional computing resources
near-linearly. The scalability of a query engine is highly related to the underlying computing
resources. Here, we analyze the scalability of CFs and VMs from the two crucial aspects: storage
and computation.
I/O Scalability. Queries have to read the tables from cloud storage. Whereas CFs also shuffle

data through cloud storage (see Section 2.4). Since table scan and shuffle are usually the most
expensive operations, the scalability of cloud storage I/O in computing services will greatly affect
the scalability of query execution.
Figure 3 shows the total S3 read bandwidth in Lambda and EC2. In this micro-benchmark, we

store 600 files (objects) of size 512MB in S3 and read them for a fixed period of time in Lambda

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:7

(a) AWS Lambda. (b) AWS EC2.

Fig. 3. Total S3 read bandwidth in AWS Lambda and EC2.

or EC2. For Lambda, we use the configuration of 10GB RAM and 6 vCPUs 3. For EC2, we use the
instance type m5.8xlarge (32 vCPUs, 128GB RAM, 10Gbps network). Each Lambda or EC2 instance
keeps reading 1MB chunks from a subset of the files with as many threads as the vCPUs. In this
way, we get reasonably close to the maximum bandwidth in the instance (70-80MB/s for Lambda;
1-1.2GB/s for EC2). The write bandwidth in Lambda is very close to the read bandwidth, whereas
queries in EC2 do not write intermediate results to S3. Therefore we only show the read bandwidth.
In Figure 3, we can see the total read bandwidth of Lambda and EC2 scale with the number of

instances. However, the read bandwidth is capped to ≈7.5GB/s when Lambda scales to more than
150 instances (Cold S3). Whereas for EC2, the read bandwidth can scale to at least 72GB/s. Due to
the quota limit of our account, we can not create more than 100 m5.8xlarge instances. If we repeat
the evaluation multiple times (>10), it seems that S3 will dynamically increase the cap for Lambda,
say to ≈15GB/s (Warm S3). Sometimes the bandwidth can burst to over 20GB/s for a few minutes,
but it is hard to reproduce. We believe this is not due to caching, as it also increases the cap for
the other files that were never read. The bandwidth will drop if there are no massive reads for a
period of time (≈10 minutes). Such short-time warm bandwidth may be ineffective for the bursty
or sparse workloads studied in [65, 66].
Moreover, we find the bandwidth of the instances is not balanced after reaching the maximum

total bandwidth, which leads to some stragglers that further reduce the I/O scalability of CFs. We do
not know the exact reason for this scalability gap. But it is reasonable as the provisioning algorithm
behind CF services has to serve general applications that are not IO-intensive, such as microservices.
Aggressive storage bandwidth provisioning will lead to a waste of resources. Whereas adaptively
adjusting the storage bandwidth for different workloads is more cost-efficient but challenging.

Computational Scalability. We use the same instance configurations as above to evaluate the
computational scalability of Lambda and EC2. Instead of file reading, we test the memory allocation
and column encoding performance, which are memory and CPU-intensive, respectively. The result
shows that both Lambda and EC2 scale linearly on such workloads.

We did not evaluate other cloud platforms as they have more restrictions on I/O throughput and
CF parallelism [18, 23, 24, 28, 30].

Takeaway: In terms of cloud storage I/O, VMs are at least 5-10x more scalable than CFs. This
significantly affects the scalability of I/O intensive workloads. The storage-based shuffle in CFs
further widens this gap for analytical queries. For CPU and memory-intensive workloads, both CFs
and VMs scale linearly.
3AWS Lambda does not allow users to select the number of vCPUs. However, the number of vCPUs in a Lambda instance is
proportional to the RAM size. More precisely, every 1769MB RAM gets at least one vCPU [20].

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:8 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

3.2 Cost-efficiency of Computing Services
The cost-efficiency of a query engine in the cloud is highly related to the unit prices and the
elasticity of the computing resources.

Unit Price. As shown in Table 1, the unit prices of the resources in Lambda are 2.1-5.6x higher
than those in EC2 on-demand VMs, and 9.1-24.3x higher than those in EC2 spot VMs. The prices of
VMs and CFs in other major cloud platforms, such as Azure and Google Cloud, are very similar to
those in AWS. Furthermore, the vCPUs in CFs are also slower. In the micro-benchmark evaluation,
we find that the per vCPU column encoding throughput in Lambda is only half of that in EC2.
Therefore, considering the bills incurred during query execution, CF is much more expensive than
VM, even if Cf is not bounded by the I/O bandwidth.

Elasticity. However, CF is billed on a per-invocation basis and has a very short startup time. In
our micro-benchmark evaluations, the cold startup time of Lambda is 1-2 seconds. AWS does not
immediately terminate the Lambda instance after the first invocation. The subsequent invocations
within 5 minutes (to our experience) can benefit from a warm startup which is much faster. Unlike
Lambda, launching an EC2 on-demand or spot instance usually takes 1-2 minutes, which is also
billed. Therefore, if VM is idle for most of its lifetime (e.g., ≥96%), it could be more expensive than
CF. This is why CF-based applications could result in lower prices [66, 69].

Takeaway: The unit price of CF is more than one order of magnitude higher than that of VM.
However, CF is more elastic and is not billed for startup and idle time; thus, it may result in a lower
price for sparse workloads. More importantly, only CF can provide interactive response latency for
unpredictable workload spikes.

3.3 Architecture Overview
As discussed in Section 3.1 and Section 3.2, for dynamic workloads, there is no clear winner between
VM and CF. To provide the optimal performance/price ratio when workload pattern changes, we
propose our hybrid query engine Pixels-Turbo that uses CFs as the auxiliary computing resources
to process workload spikes.
The architecture of Pixels-Turbo is illustrated in Figure 4. The blue blocks are the components

of Pixels-Turbo. The solid and dotted arrows are the required and optional steps to execute a
query. Like other cloud data lakes, we store the base tables in cloud object storage such as S3. The
Coordinator can run in a small VM and is the only long-running component in the system. It is
responsible for managing metadata (which is stored in key-value stores or relational databases),
query parsing and scheduling, metrics collection, and returning the query result to users.
The VM Workers and the CF Workers are two groups of workers that execute queries collabora-

tively. The former is managed by an auto-scaling framework (see Section 3.4); The latter is managed
by the CF service in the cloud. Both of them can scale to zero.
Query Execution Overview. As discussed in Section 3.2, compared to CFs, VMs requires a

longer time to startup and scale out. Thus, CF Worker only participates in query execution when
the VM cluster has no additional resources to process new coming queries while the new VMs
have not been added to the cluster. This is controlled by the query queues in the coordinator (see
Section 3.5).
The coordinator selects one of the two execution methods for each query: (1) If CF Workers

are not used, the whole query plan is executed by the VM cluster; (2) If CF Workers are used, the
coordinator pushes down the expensive operations, including table scans, joins, and aggregations,
into a sub-plan. The top-level plan will consume the result of the sub-plan as a logical temporary
table. Then the coordinator invokes the CF Workers to execute the sub-plan and send the top-level
plan to the VM cluster to assemble the final query result. The sub-plan result is directly fetched

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:9

Fig. 4. Architecture of Pixels-Turbo.

by the VM Workers without transferring through the cloud storage. More details about query
execution are discussed in Section 4.
Implementation. We use Trino [36] for VM-based query processing and use Pixels [45] for

storage management in our implementation. Trino is a lightweight MPP query engine without its
own storage. Whereas Pixels is an efficient columnar storage engine that can connect to Trino. In
our query engine, Pixels provides metadata management and columnar storage layout for base
tables and intermediates. The storage layer of Pixels has similar I/O optimizations as our baseline
Starling. We use the operation pushdown API in Trino to implement hybrid query execution. We
implement the query executors in CFs from scratch. Note that our solution can also be implemented
on other computation frameworks (e.g., Spark) and storage engines (e.g., Iceberg [10] and Hudi [9]).

3.4 Cluster Auto-scaling
The auto-scaling framework consists of three parts: (1) a metrics collector that collects the workload
and the VM status in the cluster; (2) a scaling manager that tracks the metrics and makes the scaling
decisions; (3) the scaling utils that perform the scaling actions.

Metrics Collector. The metrics collector is running in the coordinator. It collects the metrics of
the workload (e.g., the number of concurrent queries) and the VMs (e.g., CPU and memory usage).
These metrics are consumed by the Scaling Manager.

Scaling Manager. In the scaling manager, users can define scaling policies, each triggering a
specific scaling action when the metric value goes below or above the threshold. In this paper, we
use the number of concurrent queries as the primary metric. The reason is that the MPP engines
usually try to distribute a query to every core in every node to fully utilize all the computation and
I/O resources. A few concurrent queries are enough to exhaust all the resources in the cluster if
there is no resource isolation. To our observation, for TPC-H in Trino, more than two concurrent
queries will not significantly reduce the overall execution time further. However, this is the case for
decision support queries that have enough parallel tasks to occupy the whole cluster. If the query
engine has to support multi-tenant resource isolation or run small operational queries, it could
be more effective to monitor the CPU, memory, or I/O metrics of the cluster. Choosing the best
metrics and thresholds are out of the scope of this paper. Users can choose suitable metrics and
thresholds for their application scenario.

Active scale-out. We collect query concurrency value every 5 seconds. Scale-out action is trig-
gered when a number of (by default 2) consecutive values are above the scale-out threshold.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:10 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

Although this number is configurable, we set it small to actively scale out the VM cluster, thus
reducing CF usage.

Lazy scale-in. We trigger scale-in action when the average value of the metric in a delayed period
(by default 5 min) is below the scale-in threshold. The period is configurable. It avoids repeated
and ineffective scale-in and out in a short period of time. This is reasonable because VMs are very
cheap but slow to startup.

Scaling Utils. The scaling utils are composed of: (1) the OS image and VM template used by the
scaling manager to create new VMs with the software stack preinstalled; (2) the launch script that
is auto-started by the OS to launch the software stack and add the VM to the cluster; and (3) the
termination script to gracefully shut down the software stack when the VM is about to terminate.
The launch script also starts a daemon process to detect the VM termination notification signaled
by the scaling manager and the spot VM reclaim notifications signaled by the cloud provider. The
termination script will be executed by the daemon if the termination or reclaim notifications for
the VM is detected. The scaling manager will create a new spot VM to replace the reclaimed one.

Users can use on-demand VMs or spot VMs (or a mix of them if the spot VM quota is not enough).
There is little difference between them as the spot VM reclaim can be simply handled as a scale-in
action triggered by the cloud provider. When AWS decides to reclaim a spot VM, it first signals a
rebalance notification to CloudWatch [3] (a monitoring service for DevOps) that indicates the spot
VM is at elevated risk of reclaim [21]. Then, two minutes before the actual reclaim, AWS signals
another reclaim notification to CloudWatch [33]. We can proactively and gracefully shut down the
software stack in the VM by detecting these notifications.

The auto-scaling framework is robust and easy to maintain. We directly use Auto Scaling Group
(ASG) [11] in AWS as the scaling manager. It supports a variety of scaling policies. We use the
step scaling policy in ASG [34] for auto-scaling. CloudWatch in AWS automatically collects the
CPU, memory, and network metrics of the VMs. We can easily implement the metrics collector by
reporting custom metrics (e.g., query concurrency) to CloudWatch. Other major cloud platforms
also provide similar services as Auto Scaling Group and CloudWatch. These services ensure the
robustness and availability of our cluster auto-scaling framework.
For sustained workloads, the VM cluster will scale to a stable capacity that can process all the

queries without invoking CF workers. For bursty workloads, if the interval between two adjacent
spikes is shorter than the delayed period of scale-in (e.g., 5 min), the VM cluster will maintain
its capacity to process the spikes efficiently. This is cost-efficient as (spot) VMs are 1-2 orders of
magnitude cheaper than CFs but take longer (1-2 min vs. ≈1 sec) to launch and release. When the
interval between two adjacent bursts is always equal or slightly longer than the delayed period of
scale-in, however, the VM cluster will be scaled in and out ineffectively. To solve the problem, we
can either disable the VM cluster by setting the VM query queue length to zero or extending the
delayed period of scale-in. We can make the decision according to cost analysis.

3.5 QueryQueues
There are two query queues in the coordinator: (1) the VM query queue for the queries to be executed
in the VM workers; (2) the CF query queue for the queries to be executed in the CF workers. The
VM query queue has a higher priority than the CF query queue. A new coming query only enters
the CF query queue when the VM query queue is full. Queries are dequeued when finished or
aborted. Users can set the length of each queue. If the length of the VM query queue is the same as
the query concurrency threshold that triggers scale-out actions, CF workers will immediately get
involved in query execution when the cluster is about to scale out.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:11

4 QUERY EXECUTION
As discussed in Section 3.5, for the query in the CF query queue, the top-level plan and the sub-
plan are executed in the VM cluster (backed by Trino) and the CF workers, respectively. In this
section, we introduce how the sub-plan is built and executed in CFs, and how the sub-plan result is
consumed by the top-level plan.

4.1 Table Scan
To execute a table scan, the coordinator first reads the table’s metadata and builds a set of splits,
each containing the table scan parameters (e.g., schema and table names, projection, and predicates)
and the locations of a set of row groups. The splits are distributed to the VM workers. Each VM
worker launches a set of query tasks (threads) to process the splits. For a query in the VM query
queue, the query tasks directly call the file format library to read the splits. For a query in the CF
query queue, each query task packs a number of splits into a CF request and invokes a CF worker
to process the selections and projections on the splits.

Direct Write-back. In the CF worker, the scan result on the splits, which is likely much smaller
than the original data, is directly returned to the VM. This is done by attaching the VM’s address to
the CF request. Although CF does not have network ingress, it can access EC2 endpoints in a similar
bandwidth of accessing S3. Then, the result is processed locally by the query task. Compared to
passing results through the cloud storage, we reduce one network round trip in this way. We call
this optimization direct write-back.

4.2 Join
When a query arrives, the coordinator parses the query and reorders the joins based on the
statistics. For the queries to be executed in CFs, after pushing down table scans into the connector,
the coordinator continues iterating the plan tree in a depth-first manner and tries to push down
every iterated join into the connector. Following the order of join pushdown, we can reconstruct
a sub-plan in the connector with the same join order as the original query plan. The result of
the sub-plan can be seen as a temporary table, which is then consumed by the top-level plan like
consuming scan results.
To execute the joins in CFs, same as in Starling [66] and Lambada [65], we implement two

standard join algorithms: broadcast join and hash partitioned join. Broadcast join only requires one
stage of CF workers, in which each worker builds a hash table in memory for the small table; and
probes the hash table using the tuples from the splits of the large table. It is only used if the small
table can be loaded into the memory of the CF worker. Otherwise, we use the hash partitioned join,
in which the two tables are shuffled using the CF-based shuffle algorithm introduced in Section 2.4.
We discuss the details of join algorithm selection in Section 5.3.

In the shuffle, say there are𝑚 producers and 𝑛 consumers, then the producers write𝑚 partial
partitioned files to S3; after that, the consumers issue𝑚 × 𝑛 read requests to read the partitions
from the partial partitioned files. It results in significant I/O overhead and hinders the parallelism of
CPU and I/O. The combiners can reduce the number of read requests issued by the consumers, thus
preventing them from being throttled by S3. But this introduces 2x intermediate I/Os (in bytes). To
reduce the intermediate I/Os, we merge the producers into the last stage of the previous operator
(if any). This optimization is also applied in Starling [66].

Chain Join. To further reduce the I/O overhead in the CF-based joins, we propose chain join.
The idea is to merge the sequential broadcast joins into the same stage of CF workers until reaching
the shuffle boundary. Thus, the result of a broadcast join in the sequence is directly used to build
the hash table of the subsequent join without writing intermediates to S3. In our join-algorithm
selection strategy (Section 5.3), we estimate the size of each side in the join recursively. Thus, we

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:12 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

Fig. 5. Illustration of the chain joins. Blocks in the same color are merged into the same chain join.

ensure all the tables in the sequential broadcast joins, except the large table in the last join, can be
broadcast.
An example of the join plan with chain joins is shown in Figure 5, where join (B) and join (P)

denote the broadcast and hash partitioned join, respectively. Small tables are on the left side. In this
example, there are one chain-join under the shuffle boundary (in green) and one chain-join above
the boundary (in blue). In the green chain join, the last (top) broadcast join is the core join; all the
other joins are executed in the same group of CF workers of the core join. We call this kind of
chain joins broadcast chain join. Whereas in the blue chain join, the core join is the hash partitioned
join; all the broadcast joins are executed in the consumers of the core join. We call this kind of
chain joins partitioned chain join. The producers of the hash partitioned join are merged into the
CF workers of the green chain join and the broadcast join of part and lineitem. Therefore, we only
need two stages to execute this 8-table join.

Pipelining consecutive broadcast joins is straightforward in MPP databases that execute queries
using memory-buffered pipelines. To the best of our knowledge, however, merging consecutive
broadcast joins into a single stage of mappers (producers) or reducers (consumers) is not proposed
in MapReduce-like query engines. This is challenging as the memory-buffered pipeline no longer
exists. It requires a major rewrite of the query plan and the join algorithms.

Early Projection.Many DBMSs, such as PostgreSQL and Trino, prune the unnecessary columns
(e.g., the join keys that are not needed by other operators) as early as possible. This is also supported
in our CF-based joins. Besides pruning unnecessary join keys in the join result, for hash partitioned
join, we generate a projection operation for the producer stage to early prune the columns that are
only used in the selection predicates. Thus, we reduce the I/O and encoding/decoding cost of the
intermediate results. We call this optimization early projection. It is applied in traditional DBMSs
but neglected in CF-based query engines [65, 66].

4.3 Aggregation
The coordinator tries to push down aggregations after pushing down table scans and joins. We
implement the same CF-based aggregation algorithm in Starling [66] that executes aggregation in
two stages: (1) a set of CF workers each writes a file containing the partial aggregates to S3; (2) a
final CF worker reduces the partial aggregates into a final aggregate. The first stage is merged into
the last stage of the previous operator (if any). We call this algorithm direct aggregation, which is
feasible if the partial and final aggregates are small. For large aggregates, Starling partitions the
input data (i.e., table scan or join result) on the group-by keys before generating partial aggregates,
so that the second stage can run in parallel workers. We call this shuffled aggregation.

Late Shuffling. Shuffled aggregation generates a large amount of intermediate data. To reduce
the intermediate I/Os, we postpone the shuffle to the partial aggregates, i.e., we shuffle the partial

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:13

aggregates instead of the input data. As the partial aggregates are generally much smaller than the
input data, late shuffling greatly reduces the amount of intermediate I/Os in shuffled aggregation.

4.4 Implementation
In addition to the optimized query operators in CFs, at the implementation level, we have the
following optimizations that are critical for providing a reasonable performance, although they
may have been applied in other data analytic systems.
Zero Materialization. The file format library reads columnar row batches from the files. In

joins and aggregations, instead of reconstructing row-wise tuples, we directly use the row batches
to build/probe hash tables or compute aggregates by storing an intra-row-batch offset for each
tuple. This dramatically reduces the memory copy and garbage collection overhead.
Vectorized Filtering and Hashing. The selection predicates on each table are transformed

into a conjunctive normal form (CNF). All the predicates on the same column form a clause in the
CNF. For each row batch, we produce a bitmap for the clause on each column using vectorization.
Then, we use bitwise operations on the bitmaps to evaluate the CNF and get the filtering result
on the row batch. In joins and aggregations, we compute the hash value of the keys for each row
batch also using vectorization.
Asynchronous Invocation.We invoke CFs using the asynchronous API of AWS Lambda. In

this way, we can easily perform thousands of invocations per second, thus avoiding the complexity
and overhead of the multi-level invocation in Lambada [65].

5 SUB-PLAN OPTIMIZATION
In Pixels-Turbo, we use the query optimizer of Trino to optimize the original query plan. We store
the statistics of the tables and columns, including row count, column size, average column-chunk
size, cardinality, null fraction, and min/max. These statistics are exposed to the Trino optimizer for
query optimization. In addition to the Trino optimizer, we have an optimizer responsible for the
physical optimization (planning) of the sub-plan based on the statistics. We introduce the sub-plan
optimization in this section.

5.1 Instance Size of Cloud Functions
AWS Lambda allows users to set the memory size of the CF instance (ranges from 128MB to 10GB)
and allocates a proportional number of vCPUs to the instance. We use the largest instance size
(i.e., 10GB) for the sub-plan because: (1) larger instance requires fewer CF workers, and therefore
fewer intermediate files and less S3 request cost for shuffles (see Section 4.2); (2) I/O performance
of CF can only scale out to 150-200 instances (see Section 3.1); therefore a large number of small
instances with the same total amount of memory will not necessarily improve the performance; (3)
the executor runtime has a constant memory overhead and a background thread to retry the I/O
stragglers, therefore using larger instance is more memory-and-CPU efficient. In our evaluation,
we find that using the largest instance usually delivers the best performance and price, even for
small queries with fewer than 150 instances.

5.2 Split Size of Base Tables
As discussed in Section 4.1, the coordinator builds a set of splits for each base table. The split
size, i.e., the number of row groups in each split, determines the parallelism of the operators that
read base tables. Each split is read, decoded, and filtered by a thread in the worker. For joins and
aggregations, the filtered result is continuously consumed by partitioning, hash table probing, or
aggregates computing. Vectorized filter and partitioning are very efficient (see Section 4.4). Their
cost is negligible compared to the cost of read-and-decode (which is I/O and memory intensive),

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:14 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

hash table probing, and aggregates computing (which is CPU intensive). Therefore, we calculate
the split size for CF workers by Equation 1:

𝑆𝑠 = min(𝑐𝑎𝑝𝑠𝑏∑
𝑐𝑖 ∈𝐶 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 (𝑐𝑖)

,
𝑔 ∗ 𝑐𝑎𝑝𝑠𝑟

𝑆𝑟
) (1)

where 𝑐𝑎𝑝𝑠𝑏 is the cap of the number of bytes read from a split, 𝑐𝑎𝑝𝑟𝑠 is the cap of the number of
filtered rows per split,𝑔 is the total number of row groups in the table,𝐶 is the set of columns to read,
𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 refers to the average size of the column chunks of the column in all row groups. and
𝑆𝑟 is the filtered rows on the tables (Equation 3). The default values of 𝑐𝑎𝑝𝑠𝑏 and 𝑐𝑎𝑝𝑠𝑟 are 128MB
and 5M rows, respectively. The 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒 of each column is read from the statistics. We have 8
threads in each CF worker to process splits, as there are 6 vCPUs in each worker and it is commonly
recommended to use slightly more threads than CPUs for parallel query processing [37, 46]. By
setting 𝑐𝑎𝑝𝑠𝑏 and 𝑐𝑎𝑝𝑠𝑟 , we can ensure the CF workers will not block on I/O or CPU or fail on
out-of-memory (OOM) errors.

5.3 Join Algorithm Selection
We set two size caps for broadcast tables, one in bytes (𝑐𝑎𝑝𝑏𝑏), the other in the number of rows
(𝑐𝑎𝑝𝑏𝑟). 𝑐𝑎𝑝𝑏𝑏 is to control the reading and decoding cost of the broadcast table; 𝑐𝑎𝑝𝑏𝑟 is to control
the cost of building the hash table (too many entries will increase the collision rate as our hash
value is a 32-bit integer; using 64-bit hash value and the larger hash table will increase memory
consumption and may lead to OOM). Their default values are 256MB and 20M rows, respectively.
To decide whether use broadcast join or hash partitioned join, we estimate the table size in bytes
and rows by Equation 2 and Equation 3, respectively:

𝑆𝑏 =
∑︁
𝑐𝑖 ∈𝐶

𝑠𝑖𝑧𝑒 (𝑐𝑖) (2)

𝑆𝑟 = 𝑛 ∗ min
𝑐𝑖 ∈𝐶𝑝

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑐𝑖) (3)

where 𝐶 is the set of columns to read, 𝐶𝑝 is the set of columns in the predicates, and 𝑛 is the
row count of the table. As we currently do not have histograms on the table, we estimate the
joint selectivity on the table conservatively using the minimum selectivity on the columns (as
the predicates on the table are represented as a CNF on the columns, see Section 4.4) 4. The joint
selectivity might be overestimated in this way, but it avoids broadcasting oversized tables. The
selectivity of a column is estimated with the assumption of a uniform distribution between min and
max. With 𝑆𝑏 and 𝑆𝑟 , we select broadcast join if the sizes of the smaller side of the join are under
the caps. If a side of the join is a child join, we estimate the result size of the child join recursively
by adding up the sizes of its children, as there are no histograms.

5.4 Aggregation Algorithm Selection
After applying late shuffling (see Section 4.3), direct aggregation can be seen as a shuffled aggregation
with only one partition; thus, the aggregation algorithm selection problem becomes the partition
number selection problem. To decide the number of partitions, we need the size of the shuffle
intermediates. For aggregation, that is the size of the partial and final aggregates, which are
determined by the joint cardinality of the group-by keys that is estimated as:

𝐷𝑔 = max
𝑐𝑖 ∈𝐶𝑔

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑐𝑖) (4)

4Although various types of histograms can be used to improve the estimation accuracy, maintaining these histograms in an
open data lake is expensive and challenging, as the data is ingested from different data sources and manipulated by different
applications. We plan to address this problem in the next step.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:15

Table 2. Representative queries in the log analysis workload.

q1 q2 q3 q4 q5

group keys 2 1 1 1 2
types of keys date,timestamp string string date date,string
card. of keys 13K 53.7M 2984 234 53.7M
selectivity 0.19% 14.6% 14.6% 14.6% 0.14%

result rows 1440 17.7M 2513 1 233K

where 𝐶𝑔 is the set of group-by key columns. We do not use the production of each column’s
cardinality because it often leads to an extreme overestimation of the joint cardinality. Calculating
the partition number from the cardinality is discussed in Section 5.5.

5.5 Number of Partitions
It is important to decide the number of partitions in shuffle-based operators. For hash partitioned
join, similar to join algorithm selection (see Section 5.3), we have two caps for the partition size,
one in bytes (𝑐𝑎𝑝𝑝𝑏) and the other in the number of rows (𝑐𝑎𝑝𝑝𝑟). Their default values are 1024MB
and 10M rows, respectively. Then, we calculate the number of partitions by Equation 5:

𝑃 𝑗 = max(𝑆𝑏1 + 𝑆𝑏2

𝑐𝑎𝑝𝑝𝑏
,
𝑆𝑟1 + 𝛼 ∗ 𝑆𝑟2

𝑐𝑎𝑝𝑝𝑟
) (5)

where 𝑆𝑏1 and 𝑆𝑏2 are the sizes in bytes of the two tables, 𝑆𝑟1 and 𝑆𝑟2 are the sizes in rows of the
two tables, and 𝛼 is the speed ratio of hash building and hash probing. In our implementation, hash
building is about one order of magnitude slower than hash probing, thus we set 𝛼 to 0.1. In the
equation, 𝑆𝑏1 + 𝑆𝑏2 is to control the read-and-decode cost on each partition, whereas 𝑆𝑟1 + 𝛼 ∗ 𝑆𝑟2
is to control the join cost on each partition. For shuffled aggregation, we calculate the number
of partitions by dividing the joint cardinality of the group-by keys by 𝑐𝑎𝑝𝑎𝑟 which is the cap of
the number of rows per partition in shuffled aggregation. As grouping tuples plus computing
aggregates is more expensive than building a hash table, we set a smaller default value of 2.5M
rows for 𝑐𝑎𝑝𝑎𝑟 .

6 EVALUATION
6.1 Experimental Setup
We first evaluate the query latency, monetary cost, and scalability of the pure VM and CF modes of
Pixels-Turbo and the other baselines. Thus we confirm whether VM-based query execution is more
cost-efficient and scalable than CF-based query execution, which is the motivation for designing
a hybrid query engine. Then, we evaluate the elasticity of Pixels-Turbo and the baselines. After
that, we evaluate the effects of the optimizations in this paper and explain how these optimizations
contribute to the end-to-end results. We use two workloads in our evaluations:

TPC-H.We perform most of the evaluations related to table-scan and joins on the TPC-H dataset
of scale factor 1000 (1TB). In the scalability experiment, we also use the dataset of scale factor 100
(100GB). Within the 22 TPC-H queries, we select 𝑞1 and 𝑞6 as the representatives of table-scan
queries, and 𝑞3, 𝑞5, 𝑞7, 𝑞8, 𝑞10, 𝑞11, 𝑞12, and 𝑞14 as the representatives of join queries. The selected
table-scan queries cover the cases of low and high selectivity. The selected join queries cover the
cases of 2, 3, 4, 6, and 8-table joins with different input sizes and join selectivity.

Real-world Log Analysis. Trino currently does not support pushing down most of the aggrega-
tions with expressions in TPC-H; hence, we evaluate the aggregations on a real-world log analysis

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:16 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

workload from a well-known Internet company. The workload has a single table with 105 columns,
in which 52 are string columns, 25 are boolean columns, 21 are bigint columns, and the rest are
date/timestamp (ts)/int columns. The size of the dataset is 3.51TB, with 3.94 billion rows. There are
145 queries of the following form:

SELECT . . . FROM 𝑡 WHERE . . .
GROUP BY . . . [ORDER BY . . .] LIMIT n;

Each query accesses 10.3 columns on average. As shown in Table 2, we select 5 representative queries
for our evaluations, where card. of keys is the joint cardinality of the group-by keys, selectivity
is the joint selectivity of the selection predicates, and # result rows is the number of rows in the
aggregation result (not limited).

We evaluate 4 systems in our experiments:
Pixels-Turbo. In terms of storage, we would like to reuse the I/O optimizations in Starling

for the fairness of comparison. However, Starling is not open-source. Therefore, we use Pixels
format [45] as an alternative for storing base tables and intermediate results. Pixels and Starling
use similar file layouts and have similar I/O optimizations, including (1) They both hide I/O latency
by reading data items asynchronously or in parallel; (2) They both have I/O straggler mitigation
policies to reduce I/O tail latency. Pixels currently only supports columnar encoding, such as
run-length and dictionary encoding. Heavy compression algorithms such as Snappy and ZSTD
are not supported. For TPC-H 1TB and 100GB, the Pixels data sizes after encoding are 710GB and
69.6GB, respectively. For the log analysis dataset, the Pixels data size after encoding is 1.35TB.

In terms of computation, we use AWS Lambda for the CF engine and EC2 for the VM engine (i.e.,
Trino), respectively. For Lambda, we enable all the optimizations in Section 4 and use the default
optimizer parameters in Section 5. For EC2, we use the instance type m5.8xlarge (32 vCPUs, 128GB
RAM, 10Gbps network). We use spot VM in all the evaluations in this section. We requested AWS
to increase our Lambda parallelism from 1000 to 10000 and increase our vCPUs quota for both spot
and on-demand VMs from 640 to 1600, thus we can create enough CF and VM instances.

To know the query latency, monetary cost, and scalability of the queries on different computing
services, we force Pixels-Turbo to execute queries in either VMs (namely Pure-VM) or CFs (namely
Pure-CF) in the corresponding evaluations. Pure-VM relies on Trino to run queries. We only provide
statistics to Trino through our customized connector for query optimization. In the elasticity
evaluation, we let Pixels-Turbo work in the Hybrid mode.
Starling (simulated).We re-implemented the scan, join, and aggregation algorithms in Star-

ling [66] using Pixels as the storage format. Thus, we simulate Starling by forcing Pixels-Turbo to
execute the queries using these algorithms. We call this Starling-S. The data used in Starling-S is
the same as in Pixels-Turbo.

Redshift-serverless.We denote it as Redshift-SL in the evaluations. As introduced in Section 2.2,
Redshift-SL and Athena are the two serverless query services in AWS. They can query the open-
format (e.g., Parquet) data in S3. We would like to use the same file format implementation in all
the systems. However, Redshift-SL and Athena do not support custom file formats (e.g., Pixels).
Therefore, we use Parquet in these two systems. To be fair, we do not use heavy compression in
Parquet and ensure that the average number of rows in each row group is about the same in both
Parquet and Pixels. In this way, the encoded data size of each Parquet file is around 128MB, which
is recommended by Redshift and Athena [6, 35]. For TPC-H 1TB and 100GB, the Parquet data sizes
after encoding are 769GB and 75.2GB, respectively. For the log analysis dataset, the Parquet data
size after encoding is 1.5TB.

In Redshift-SL, users can set the parallelism of RPUs (Redshift processing units, each has 16GB
memory [27]) to 32 or above, thus controlling the performance andmonetary cost. In the evaluations,
to compare Redshift-SL, Starling, and Pixels-Turbo, we tune the parallelism of RPUs to ensure

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:17

(a) TPC-H query latency.

(b) TPC-H monetary cost.

(c) Log analysis query latency. (d) Log analysis monetary cost.

Fig. 6. Query latency and monetary cost on TPC-H 1TB and log analysis datasets.

Redshift-SL has the same total memory capacity as other systems. This is fair because memory is
essential for query processing, and the other resources in the cloud, such as vCPUs and network
bandwidth, are often allocated proportionally to the memory capacity.

Athena.As discussed above, we use the same Parquet datasets in Athena and Redshift-SL. Athena
does not allow users to tune the underlying cluster or query engine. Hence, we can not control the
amount of resources used by Athena. In the experiments, we use Athena engine version 3, which
has integrated some improvements from the Trino and Presto open-source communities [2].

6.2 Query Latency
In this evaluation, to compare the systems fairly, we ensure each system (except Athena) has
2TB of total memory. With this configuration, Redshift-serverless (Redshift-SL) uses 128 RPUs;
Starling-S and Pure-CF use 200 parallel Lambda instances; Pure-VM has 16 m5.8xlarge VMs. Athena
is automatically scaled by the backend platform. For query optimization, we provide the row count
of each table to Athena and Redshift-SL as this is the only statistic they support; we provide the
statistics discussed in Section 5 to the Trino [36] optimizer to generate the optimized query plan
for Starling-S, Pure-CF and Pure-VM.

The result is shown in Figure 6a and Figure 6c. Pure-VM is the apparent winner in this evaluation,
thanks to higher I/O bandwidth and the efficient MPP engine. Currently, Athena can not effectively
reorder the complex joins in TPC-H 𝑞8 and 𝑞10. It generates a similar join order as the one generated
by the rule-based query optimizer in Trino or Presto. This is why Athena performs poorly on these
queries. Redshift-SL has a similar problem. It can reorder the joins based on the row count of the
tables and generate a good join order for TPC-H 𝑞8. However, it generates sub-optimal join order
for 𝑞3 and 𝑞10. In addition, Athena and Redshift-SL perform poorly on the aggregation queries
(Figure 6c). This might be an implementation issue of the aggregation operator.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:18 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

Starling-S and Pure-CF only differ in the scan, join, and aggregation algorithms. Both of them
return the sub-plan result to the VM worker. In this and the following evaluations, we run a single
VM worker located on the same VM of the Coordinator for Starling-S and Pure-CF. TPC-H 𝑞1 has
high selectivity, thus both Starling-S and Pure-CF perform poorly as they have to return 183GB
scan results to the VM worker. Their performance is good on the other scan query 𝑞6 with low
selectivity. It can be seen that Starling-S and Pure-CF are slower than the other non-CF-based
systems (especially Pure-VM) on the join queries. This is due to the S3-based shuffle discussed in
Section 2.4 and the S3 bandwidth limitation discussed in Section 3.1. This performance gap is more
evident on TPC-H 𝑞5, which has high selectivity on the base tables. However, Pure-CF is faster
than Starling-S on TPC-H 𝑞3, 𝑞5, and log analysis 𝑞2. This is due to the early projection, chain join,
and late shuffling optimizations discussed in Section 4.
Takeaway: MPP cluster (Pure-VM) is more efficient than CF-based query engines, although our

CF-based optimizations can improve the performance of specific queries. Serverless query services
based on clusters can be performant if they are not suffering from lousy query optimization or
operator implementation. In addition, simply pushing down table-scan to CFs like what Redshift
Spectrum does [43] is only efficient for low-selectivity queries.

6.3 Monetary Cost
The configuration of this evaluation is the same as in Section 6.2. For Pure-VM, we calculate the cost
of a query by the cumulative VMs cost during query execution. For Pure-CF and the other systems,
the cost of a query is calculated by the amount of resources consumed. There is an additional cost
on the S3 requests for all these systems.
The result is shown in Figure 6b and Figure 6d. We can see that Pure-VM has 1-2 order of

magnitude lower monetary cost than the other query engines on both TPC-H and log analysis
workloads. For TPC-H queries, the average query cost of Pure-CF, Starling-S, Redshift-SL, and
Athena are 47.86, 56.57, 120.51, and 75.87 US cents, respectively. For the log analysis queries, the
average query cost of Pure-CF, Starling-S, Redshift-SL, and Athena are 21.4, 29.6, 70.4, and 27.04
US cents, respectively. As discussed in Section 3.4, Pixels-Turbo will work in pure VM mode for
sustained workloads. Considering the higher performance of Pure-VM shown in Section 6.2, we
claim that for sustained workloads, our query engine provides 1-2 orders of magnitude higher
performance/price ratio than the serverless query engines.
The cost of Athena is proportional to the amount of data scanned ($5/TB), hence for the scan-

heavy queries (e.g., TPC-H 𝑞1, 𝑞6, 𝑞14, and log analysis 𝑞4), it tends to be more expensive than the
other systems. Redshift-SL charges on the cumulative RPU-seconds consumed by the query, hence
the cost is proportional to the RPU parallelism and the query latency. The sub-optimal join order for
TPC-H 𝑞3 and 𝑞10 and the inefficient aggregation implementation dramatically increase its average
cost. Starling-S and Pure-CF are more expensive than Pure-VM due to the higher query latency and
higher price of AWS Lambda. However, we can see that the monetary cost gap between Starling-S
and Pure-CF is larger than their performance gap. This is because the optimizations in Section 4
further reduces the amount of S3 requests, which is charged in addition to the Lambda cost.

Takeaway: For analytical query processing in the cloud, MPP cluster in spot VMs (Pure-VM) is
1-2 orders of magnitude more cost-efficient than other solutions. Our execution optimizations can
generally reduce the monetary cost of queries in CFs.

6.4 Scalability
We evaluate the scalability of the systems from two dimensions: (1) increasing both data size and
hardware scale to see whether the system can scale out to support larger datasets; (2) only increasing

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:19

(a) Scan queries. (b) Join queries. (c) Aggr. queries.

Fig. 7. The speedup of scan, join, and aggregation queries in different systems under different hardware
scales (i.e., total memory capacities).

the hardware scale to see whether the system can scale out to provide lower query latency (i.e.,
higher query throughput). The latter is more significant for interactive analytical workloads, as
the query throughput may change faster than the data volume. We control the hardware scale by
tuning the total memory capacity of the system, except for Athena. For Pure-CF and Starling-S, we
tune the total memory capacity by proportionally tuning the caps 𝑐𝑎𝑝𝑠𝑏 , 𝑐𝑎𝑝𝑠𝑟 , 𝑐𝑎𝑝𝑝𝑏 , and 𝑐𝑎𝑝𝑝𝑟 ,
introduced in Section 5.

In the first dimension, we use 512GB memory for TPC-H 100GB because of the minimum RPUs
(i.e., 32) that Redshift-SL supports. The result is compared with the query latency in Section 6.2
(TPC-H 1TB, 2TB memory). That is, the data size is increased by 10x while the amount of resources
(total memory) is increased by 4x. If the system scales linearly (ideal), the query latency will increase
by only 2.5x on TPC-H 1TB. The result shows that in Athena, Redshift-SL, Starling-S, Pure-CF,
and Pure-VM, the average query latency on TPC-H 1TB increased by 5.48x, 4.43x, 4.55x, 4.14x, and
2.69x, respectively. It can be seen that Pure-VM has the best scalability, whereas Pure-CF is more
scalable than Starling-S. Athena and Redshift-SL do not suffer from the sub-optimal join orders on
TPC-H 100GB as the dataset is small enough.

In the second dimension, we use the TPC-H 1TB and the log analysis datasets, but tune the
memory capacity from 1TB to 4TB. Athena is not evaluated. The result is shown in Figure 7. On
scan queries, both Pure-VM and Redshift-SL scale linearly, whereas both Pure-CF and Starling-S
only scale to ≈1.1x because of the bandwidth bottleneck of reading data and returning results. On
join queries, Pure-VM scales near-linearly. Redshift-SL suffers from the sub-optimal join orders on
TPC-H 𝑞3 and 𝑞10. If we exclude these two queries, its speedup on 4TB memory increases from
2.12x to 2.52x. Pure-CF has better scalability than Starling-S, although they are both bounded by
the I/O bandwidth at a scale larger than 2TB. On aggregation queries, Pure-VM and Redshift-SL
scale linearly, whereas Pure-CF and Starling-S are in a similar condition as on join queries (but
they have lower speedups on aggregation queries as the aggregation queries are more affected by
the I/O latency on small partial aggregates).

Takeaway: The systems designed for clusters with inter-node communication (Pure-VM and
Redshift-SL) have better scalability if not affected by the sub-optimal query plan. Our execution
optimizations can improve the scalability of the queries in CFs.

6.5 Elasticity
In the aforementioned evaluations, we demonstrate that for sustained workloads, Pixels-Turbo is
significantly more cost-efficient and scalable than the serverless query engines. In this evaluation,
we further confirm that for bursty workloads, Pixels-Turbo achieves a high performance/price ratio
without compromising the elasticity of allocating resources.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:20 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

Fig. 8. Illustration of the representative workload patterns.

We evaluate the elasticity of Hybrid (the hybrid mode of Pixels-Turbo), Pure-CF, Pure-VM, Athena,
and Redshift-SL on four representative workload patterns shown in Figure 8. The first pattern
demonstrates a single workload spike followed by a cliff-like workload drop; The second pattern
demonstrates two consecutive workload spikes with an interval shorter than the delayed period
of scale-in (see Figure 9c); The third pattern demonstrates two consecutive workload spikes with
an interval slightly longer than the delayed period of scale-in; The last pattern demonstrates two
overlapping workload spikes. Each workload pattern lasts for one hour. To generate the workload
patterns, we use three workloads:𝑤1 is a simple-join workload running TPC-H 𝑞12 at the rate of
3 queries per minute (QPM); 𝑤2 is a scan-and-aggregate workload running log analysis 𝑞2 at 3
QPM; And𝑤3 is a complex-join workload running TPC-H 𝑞5 at 2 QPM. Each workload is submitted
by a JDBC client. In workload pattern 1, we run 𝑤1 in the first 40 minutes and run 𝑤2 between
minutes 31-40 (both inclusive, the same below). In workload patterns 2, 3, and 4, we run𝑤1 as the
background workload. To simulate the workload spikes, in pattern 2, we run𝑤2 between minutes
31-34 and minutes 39-42; In pattern 3, we run 𝑤2 between minutes 31-34 and minutes 41-44; In
pattern 4, we run𝑤2 between minutes 31-40 and run𝑤3 between minutes 35-36.

We use m5.8xlarge spot VMs in Hybrid and Pure-VM. For Hybrid, we launch 8 VMs as the initial
capacity, and use the following scaling policies: (1) Add 100% instances when two consecutive
query concurrency values (see Section 3.4) are larger than 2 (same as the VM query queue length,
see Section 3.5); (2) Release 50% instances when the average query concurrency within 5 minutes is
in the range of [0.25, 0.5); (3) Release 75% instances when the average query concurrency within 5
minutes is in the range of [0, 0.25). When the current scaling action is not completed, other actions
cannot be triggered. For Pure-VM, we provision the VMs to ensure that workload spikes can be
processed smoothly. In our experiments, Redshift-SL did not show any auto-scaling behavior, and
we did not find any related settings in the documents. Therefore, we set the base RPUs (default
capacity) of Redshift-SL to ensure that workload spikes can be processed without congestion.
The monetary costs of the systems under the workload patterns are shown in Figure 9. We

measure the cost at the minute granularity, and the cost of each query is attributed to the minute it
is submitted. Following the officially recommended method to check the usage [40], we found that
Redshift-SL is actually billed on a per-minute basis. Therefore its monetary cost is consistent as
long as every minute has queries. Athena is charged for the amount of data scanned, thus its lines
are flat when the query rate is stable. Pure-CF is charged for the running time of Lambda, thus its
lines float with the latency of the queries.
In Figure 9, we can see that: (1) For all the workload patterns, Hybrid provides the lowest

cumulative monetary cost; (2) Same as the serverless query engines, Hybrid has the ability of
scale-to-zero when the workload is stopped (see Figure 9a); (3) Upon workload spikes, Hybrid is
as elastic as the serverless query engines in rapidly allocating more resources; (4) Lazy scale-in
can effectively handle frequent workload spikes and provide a high cost-efficiency (see Figure 9b),
but it is ineffective when the spikes interval is slightly longer than the delayed period of scale-in;
(5) Active scale-out can effectively reduce CF usage (i.e., costs) for long spikes (e.g., 10 minutes in

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:21

(a) Workload pattern 1. (b) Workload pattern 2.

(c) Workload pattern 3. (d) Workload pattern 4.

Fig. 9. Monetary cost per minute of the workload patterns.

Fig. 10. Average query latency of the workload patterns.

Figure 9a) and frequent spikes (e.g., in Figure 9b), but it may lead to additional costs (e.g., during
minutes 37-44 in Figure 9d) for a single short spike of 1-2 minutes. As discussed in Section 3.4,
we might achieve a better performance/price ratio for our workloads by tuning the auto-scaling
parameters.
The average query latency of the workload patterns is shown in Figure 10. We can see that

Hybrid provides lower query latency than Athena and Pure-CF in all cases, as most of the queries
are efficiently processed in the VM cluster. Redshift-SL is faster than Hybrid on 𝑤1 (i.e., TPC-H
𝑞12) and𝑤3 (i.e., TPC-H 𝑞5), whereas Pure-VM is faster than Hybrid in all cases. The reason is that
Redshift-SL and Pure-VM are provisioned for the workload spikes. However, provisioning brings
higher monetary and operation costs.

Takeaway: For the evaluated bursty workload patterns, Hybrid provides the lowest monetary
cost and scales rapidly when the workload grows. Further, Hybrid provides lower query latency
than the auto-scalable baselines.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:22 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

Fig. 11. Speedup of the optimizations on TPC-H 1TB.

Fig. 12. The join plan of TPC-H 𝑞5 in the hybrid mode of Pixels-Turbo.

6.6 Effects of Early Projection
We evaluate the performance gains of our query execution optimizations using the same configura-
tion in Section 6.2. The result on TPC-H queries is shown in Figure 11.

As discussed in Section 4.2, in hash partitioned joins, early projection avoids shuffling the columns
only used in selections. Figure 11 shows that early projection improves the performance of TPC-H
𝑞3, 𝑞5, 𝑞10, 𝑞12, and 𝑞14. Especially for TPC-H 𝑞3, early projection reduces the intermediate results in
shuffling from 65.7GB to 59.65GB, thus speeding up the query by 1.22x. Note that early projection
not only reduces the amount of I/Os but also reduces the CPU time on encoding and decoding the
redundant columns.

6.7 Effects of Chain Join
As discussed in Section 4.2, chain join reduces the amount of intermediate I/Os in executing the
query plan that has sequential broadcast joins. In Figure 11, we can see that chain join is effective
on TPC-H 𝑞5, 𝑞7, 𝑞8, and 𝑞11. They have complex joins of 3-8 tables. We find that chain join is more
effective in two cases: (1) the query plan only contains one sequence of broadcast joins (e.g., TPC-H
𝑞11); (2) the query plan has a sequence of broadcast joins on top of a high-selectivity join (e.g.,
TPC-H 𝑞5). In the first case, all the joins are merged into a single stage without any intermediate
I/Os. The second case is illustrated by the join plan of TPC-H 𝑞5 in Figure 12, where blocks in the
same color denote the same stage; join (B) and join (P) denote the broadcast and hash partitioned
joins, respectively. In this query, the two hash-partitioned joins have a relatively high selection and
join selectivity. Therefore the intermediate join result is large. With the partitioned chain join (in
green), the large intermediate join result is directly consumed as the probe side by the root of the
join plan without being materialized.

6.8 Effects of Direct Write-back
As discussed in Section 4.1, direct write-back returns the result of the sub-plan directly to the
VM workers. In Figure 11, we can see that direct write-back has performance gain on most of the
queries. However, the performance gain is insignificant in the cases: (1) the sub-plan result is very

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:23

large (e.g., TPC-H 𝑞1, 𝑞10), therefore the result transfer is bounded by the network inbound of the
VM worker no matter where the result comes from (cloud storage or CF worker); (2) the sub-plan
result only contains a few small files (e.g., TPC-H 𝑞8, 𝑞14, and all the log analysis queries), therefore
the transfer cost of the result is negligible. On the queries that return a large number of result files
from the sub-plan, such as TPC-H 𝑞5, the performance gain is more significant because in this case,
direct write-back reduces many network round-trips in fetching the result. However, it has a risk
of causing disk/memory-full errors if the result in the VM is not cleaned properly.

6.9 Effects of Late Shuffling
As discussed in Section 4.3, late shuffling avoids shuffling the large base table when the joint
cardinality of the group-by keys is large. Among the selected queries of the log analysis workload
(see Table 2), 𝑞2 and 𝑞5 have large cardinality (53.7M) on the group-by keys. For Pure-CF, the sub-
plan optimizer chooses shuffled aggregation for these two queries and sets the number of partitions
to 21 (see Section 5.4 and Section 5.5). For Starling-S, late shuffling is disabled, we hard-code the
number of partitions for the base table partitioning to the same number 21. In Figure 6c, we can
see that late shuffling has a 2.15x speedup on log analysis 𝑞2 but no gain on 𝑞5. The reason is that
log analysis 𝑞5 has a very low selectivity (0.14%), hence the table scan result is already small, and
early or late shuffling does not make a significant difference in this case.

6.10 Effects ofQuery Optimization
Trino Optimizer. In Pixels-Turbo, the Trino optimizer is responsible for join reordering. To do
this, we provide the table and column statistics to Trino through the connector API. However, we
can turn off the cost-based join reordering in Trino using configuration properties or by returning
empty statistics. We compared the performance of the join queries on TPC-H 1TB (in a cluster of
16 m5.8xlarge VMs) with and without cost-based join reordering. The result shows that cost-based
join reordering provides an average speedup of 1.48x. In Presto (where Trino forked from), the
cost-based join reordering is disabled by default [25]. This might be a minor reason why Starling
outperformed Presto in [66], in addition to the proposed I/O optimizations such as parallel reads
and straggler mitigation. In this paper, we enable both I/O optimizations and cost-based query
optimization for the VM workers, thus Pure-VM can outperform Pure-CF and Starling-S.
Tunable Sub-plan Optimizer. As discussed in Section 5, there are 7 tunable caps in our sub-plan
optimizer. In Section 6.4, we tune 4 of them, i.e., 𝑐𝑎𝑝𝑠𝑏 , 𝑐𝑎𝑝𝑠𝑟 , 𝑐𝑎𝑝𝑝𝑏 , and 𝑐𝑎𝑝𝑝𝑟 , to scale Pure-CF
and Starling-S to different number of parallel Lambda workers. The result shows the effectiveness
of these caps. The cap for shuffled aggregation, i.e., 𝑐𝑎𝑝𝑎𝑟 , is not tuned as the cardinality of the data
is not changed. The other two caps, i.e., 𝑐𝑎𝑝𝑏𝑏 and 𝑐𝑎𝑝𝑏𝑟 , are used as the threshold of broadcasting.
They are set according to the capacity of the CF instance. We also tried to manually tune the
sub-plan for TPC-H queries. The result shows that the manually tuned sub-plans only outperform
the sub-plans generated through our sub-plan optimizer by 9.1% under the same monetary cost.
However, there is a precondition that the data distribution in TPC-H is approximately uniform. For
non-uniform distributions, we need to further improve our sub-plan optimizer, for example, by
adding histograms.

7 RELATEDWORK
Serverless Data Processing. In addition to the serverless query services discussed in Section 2.2,
there are some general-purpose data processing services in the cloud, such as elastic MapReduce [1,
13]. These services help customers reduce the maintenance cost of big data frameworks. In the
research community, many works focus on cloud functions (CFs). [54] points out the limitations of
CFs for data processing. Whereas Boxer [64] and Sonic [61] propose solutions to address some of

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

161:24 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

these limitations. PyWren [56], Locus [67], Flint [57], and Astrea [55] propose solutions to execute
and optimize the MapReduce-style jobs in CFs. Starling [66] and Lambada [65] propose frameworks
to execute SQL queries in CFs. Our paper proposes a solution to execute queries adaptively in
CFs and virtual machines (VMs), thus achieving a higher cost-efficiency without compromising
elasticity. It can be used as the backend of serverless query services.
Data Processing using Spot VMs. Spot VM is promising for cost-efficient data processing in the
cloud. Redy [78] and CompuCache [77] use Spot VMs to reduce the monetary cost of a distributed
memory cache. MHVMs [52] studies the memory allocation strategies for spot VMs and the
strategies’ effects on the data processing frameworks running in spot VMs. Our paper uses spot
VMs to improve the cost-efficiency of query processing.
Hybrid Query Execution. HadoopDB [41] and Hadapt [44] integrate relational databases as a
kind of co-processor into the MapReduce framework. PushdownDB [73] pushes down the scan and
partial join/aggregation into the smart storage such as S3-Select [29]. Redshift Spectrum [43] pushes
down selection and projection into a function service that is similar to Lambda. Modularis [59]
improves the query engine’s portability on different infrastructures by dividing relational operators
into sub-operators. We relate to these works in the sense of pushing down query operators into a
different runtime. But instead of finding the best runtime for each operator, our purpose of pushing
down is to temporarily divert the workload spikes into the auxiliary executor for better elasticity.
Therefore, our pushdown is more aggressive, and our auxiliary executor has the full functionality
for executing a query.
Query Optimization. Traditional DBMSs (e.g., PostgreSQL) and MPP databases (e.g., Green-
plum [60] and Redshift (cluster) [53]) have powerful cost-based query optimizers. Early Hadoop
systems dropped the query optimizer. Later, SQL-on-Hadoop systems, such as Hive, Presto, and
Spark, bring the optimizers back into their kernels [42, 70]. However, maintaining complex statistics
in an open data lake is challenging; hence, most of the optimizers are either rule-based or based on
simple statistics. And they are designed for clusters. Our paper proposes a cost-based optimizer for
SQL queries in CFs based on the limited statistics in data lakes.

8 CONCLUSION
This paper reveals that cloud functions are more elastic than virtual machines but are less cost-
efficient and scalable. To combine the elasticity of cloud functions and the cost efficiency and
scalability of virtual machines, we propose Pixels-Turbo - a hybrid query engine that uses cloud
functions as the auxiliary computing resource for query processing. The query engine executes
queries in an auto-scaling spot virtual machine cluster by default and invokes cloud functions to
temporarily process the queries when the cluster has not scaled out to the necessary scale. To
further improve the performance of the workload spikes, we propose execution optimizations and
the cost-based optimizer for query execution in cloud functions. Compared to existing serverless
query engines, Pixels-Turbo is 1-2 orders of magnitude more cost-efficient for sustained workloads
while not compromising elasticity for unpredictable workload spikes.

ACKNOWLEDGMENTS
We would like to thank Dr. Panagiotis Sioulas for his suggestion to use spot instances to improve
the cost efficiency of our query engine further. We thank Dimitra Tsaoussis Melissargos for her help
in managing the AWS account for our experiments. We also thank the anonymous reviewers and
the other members of the Data Intensive Applications & Systems Lab at EPFL, for their constructive
feedback that greatly improves the quality of this paper.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:25

REFERENCES
[1] 2022. Alibaba Cloud E-MapReduce. https://www.alibabacloud.com/product/emapreduce
[2] 2022. Amazon Athena Engine Version 3. https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-

0003.html
[3] 2022. Amazon CloudWatch. https://aws.amazon.com/cloudwatch/
[4] 2022. Amazon EC2 On-demand Instances. https://aws.amazon.com/ec2/spot/
[5] 2022. Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/pricing/on-demand/
[6] 2022. Amazon Redshift Advisor recommendations. https://docs.aws.amazon.com/redshift/latest/dg/advisor-

recommendations.html
[7] 2022. Amazon Redshift Serverless. https://aws.amazon.com/redshift/redshift-serverless/
[8] 2022. Amazon S3. https://aws.amazon.com/s3/
[9] 2022. Apache Hudi. https://hudi.apache.org/
[10] 2022. Apache Iceberg. https://iceberg.apache.org/
[11] 2022. Auto Scaling Groups. https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
[12] 2022. AWS - Spot Instance advisor. https://aws.amazon.com/ec2/spot/instance-advisor/
[13] 2022. AWS EMR. https://aws.amazon.com/emr/
[14] 2022. AWS Glue. https://aws.amazon.com/glue/
[15] 2022. AWS Lambda. https://aws.amazon.com/lambda/
[16] 2022. Azure - Use Azure Spot Virtual Machines - Pricing and eviction history. https://learn.microsoft.com/en-us/azure/

virtual-machines/spot-vms#pricing-and-eviction-history
[17] 2022. Azure Analysis Services. https://azure.microsoft.com/en-us/services/analysis-services/#overview
[18] 2022. Azure Functions Hosting Options - Scale. https://learn.microsoft.com/en-us/azure/azure-functions/functions-

scale#scale
[19] 2022. BigQuery under the Hood. https://cloud.google.com/blog/products/bigquery/bigquery-under-the-hood
[20] 2022. Configuring Lambda Function Options. https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-

common.html
[21] 2022. EC2 Instance Rebalance Recommendations. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-

recommendations.html
[22] 2022. Google BigQuery. https://cloud.google.com/bigquery
[23] 2022. Google Cloud Storage - Quotas and Limits - Bandwidth. https://cloud.google.com/storage/quotas#bandwidth
[24] 2022. Google Cloud Storage - Request rate and access distribution guidelines. https://cloud.google.com/storage/docs/

request-rate
[25] 2022. Presto Docs - Join Reordering Strategy. https://prestodb.io/docs/current/admin/properties.html#optimizer-join-

reordering-strategy
[26] 2022. Presto. https://prestodb.io/. https://prestodb.io/
[27] 2022. Redshift Serverless Considerations. https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-considerations.

html
[28] 2022. Resource Quota of Google Cloud Functions 2nd Gen. https://cloud.google.com/functions/docs/concepts/version-

comparison#new-in-2nd-gen
[29] 2022. S3 Select and Glacier Select – Retrieving Subsets of Objects. https://aws.amazon.com/blogs/aws/s3-glacier-select/
[30] 2022. Scalability and performance targets for Blob storage. https://learn.microsoft.com/en-us/azure/storage/blobs/

scalability-targets
[31] 2022. Spark Operator Pushdown. https://www.databricks.com/dataaisummit/session/spark-data-source-v2-

performance-improvement-aggregate-push-down
[32] 2022. Spark SQL. http://spark.apache.org/sql/
[33] 2022. Spot Instance Interruption Notices. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-

termination-notices.html
[34] 2022. Step and simple scaling policies for Amazon EC2 Auto Scaling. https://docs.aws.amazon.com/autoscaling/ec2/

userguide/as-scaling-simple-step.html
[35] 2022. Top 10 Performance Tuning Tips for Amazon Athena. https://aws.amazon.com/blogs/big-data/top-10-performance-

tuning-tips-for-amazon-athena/
[36] 2022. Trino. https://trino.io/
[37] 2022. Trino - Task Properties. https://trino.io/docs/current/admin/properties-task.html
[38] 2022. Trino Graceful-shutdown. https://trino.io/docs/current/admin/graceful-shutdown.html
[39] 2022. Trino Operator Pushdown. https://trino.io/docs/current/optimizer/pushdown.html
[40] 2023. Billing for Amazon Redshift Serverless. https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.html

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

https://www.alibabacloud.com/product/emapreduce
https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html
https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/redshift/latest/dg/advisor-recommendations.html
https://docs.aws.amazon.com/redshift/latest/dg/advisor-recommendations.html
https://aws.amazon.com/redshift/redshift-serverless/
https://aws.amazon.com/s3/
https://hudi.apache.org/
https://iceberg.apache.org/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://aws.amazon.com/ec2/spot/instance-advisor/
https://aws.amazon.com/emr/
https://aws.amazon.com/glue/
https://aws.amazon.com/lambda/
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms#pricing-and-eviction-history
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms#pricing-and-eviction-history
https://azure.microsoft.com/en-us/services/analysis-services/#overview
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#scale
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#scale
https://cloud.google.com/blog/products/bigquery/bigquery-under-the-hood
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://cloud.google.com/bigquery
https://cloud.google.com/storage/quotas#bandwidth
https://cloud.google.com/storage/docs/request-rate
https://cloud.google.com/storage/docs/request-rate
https://prestodb.io/docs/current/admin/properties.html#optimizer-join-reordering-strategy
https://prestodb.io/docs/current/admin/properties.html#optimizer-join-reordering-strategy
https://prestodb.io/
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-considerations.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-considerations.html
https://cloud.google.com/functions/docs/concepts/version-comparison#new-in-2nd-gen
https://cloud.google.com/functions/docs/concepts/version-comparison#new-in-2nd-gen
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://www.databricks.com/dataaisummit/session/spark-data-source-v2-performance-improvement-aggregate-push-down
https://www.databricks.com/dataaisummit/session/spark-data-source-v2-performance-improvement-aggregate-push-down
http://spark.apache.org/sql/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://trino.io/
https://trino.io/docs/current/admin/properties-task.html
https://trino.io/docs/current/admin/graceful-shutdown.html
https://trino.io/docs/current/optimizer/pushdown.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.html

161:26 Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki

[41] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander Rasin. 2009. HadoopDB: An
Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2, 1 (2009).

[42] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD.

[43] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran Chinta, Venkatraman
Govindaraju, Todd J. Green, Monish Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael
McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychroniou, Foyzur Rahman,
Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian, and Doug Terry. 2022. Amazon Redshift Re-Invented. In
SIGMOD.

[44] Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi Silberschatz, and Erik Paulson. 2011. Efficient Processing of Data
Warehousing Queries in a Split Execution Environment. In SIGMOD.

[45] Haoqiong Bian and Anastasia Ailamaki. 2022. Pixels: An Efficient Column Store for Cloud Data Lakes. In ICDE.
[46] Haoqiong Bian, Ying Yan, Wenbo Tao, Liang Jeff Chen, Yueguo Chen, Xiaoyong Du, and Thomas Moscibroda. 2017.

Wide Table Layout Optimization Based on Column Ordering and Duplication. In SIGMOD.
[47] Nicolas Bruno, Johnny Debrodt, Chujun Song, and Wei Zheng. 2022. Computation Reuse via Fusion in Amazon Athena.

In ICDE.
[48] Lei Chang, Zhanwei Wang, Tao Ma, Lirong Jian, Lili Ma, Alon Goldshuv, Luke Lonergan, Jeffrey Cohen, Caleb Welton,

Gavin Sherry, and Milind Bhandarkar. 2014. HAWQ: A Massively Parallel Processing SQL Engine in Hadoop. In
SIGMOD.

[49] Yueguo Chen, Xiongpai Qin, Haoqiong Bian, Jun Chen, Zhaoan Dong, Xiaoyong Du, Yanjie Gao, Dehai Liu, Jiaheng
Lu, and Huijie Zhang. 2014. A Study of SQL-on-Hadoop Systems. In BPOE@ASPLOS/VLDB.

[50] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh,
Daniel Engovatov, Martin Hentschel, Jiansheng Huang, et al. 2016. The snowflake elastic data warehouse. In SIGMOD.

[51] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on Large Clusters. In OSDI.
[52] Alex Fuerst, Stanko Novakovic, Íñigo Goiri, Gohar Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene

Bak, Mehmet Iyigun, and Ricardo Bianchini. 2022. Memory-Harvesting VMs in Cloud Platforms. In ASPLOS.
[53] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani, and Vidhya Srinivasan.

2015. Amazon Redshift and the Case for Simpler Data Warehouses. In SIGMOD.
[54] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith, Vikram Sreekanti, Alexey Tumanov,

and Chenggang Wu. 2019. Serverless Computing: One Step Forward, Two Steps Back. In CIDR.
[55] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. 2022. Astrea: Auto-Serverless Analytics Towards Cost-Efficiency

and QoS-Awareness. TPDS 33, 12 (2022), 3833–3849.
[56] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Occupy the Cloud: Distributed

Computing for the 99%. In SoCC (SoCC ’17).
[57] Y. Kim and J. Lin. 2018. Serverless Data Analytics with Flint. In CLOUD.
[58] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey Ching, Alan Choi, Justin Erickson, Martin

Grund, Daniel Hecht, Matthew Jacobs, Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis
Pandis, Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis, Skye Wanderman-Milne, and
Michael Yoder. 2015. Impala: A Modern, Open-Source SQL Engine for Hadoop. In CIDR.

[59] Dimitrios Koutsoukos, Ingo Müller, Renato Marroquín, Ana Klimovic, and Gustavo Alonso. 2021. Modularis: Modular
Relational Analytics over Heterogeneous Distributed Platforms. PVLDB 14, 13 (2021).

[60] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang, Jinbao Chen, Asim Praveen, Yu Yang,
Xiaoming Gao, Alexandra Wang, Wen Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang
Wu, Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for Transactional and Analytical
Workloads. In SIGMOD.

[61] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2021. SONIC:
Application-aware Data Passing for Chained Serverless Applications. In ATC.

[62] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis.
2010. Dremel: Interactive Analysis of Web-Scale Datasets. PVLDB 3, 1 (2010).

[63] Armbrust Michael, Das Tathagata, Sun Liwen, Yavuz Burak, Zhu Shixiong, Murthy Mukul, Torres Joseph, Hovell
Herman, van, Ionescu Adrian, Luszczak Alicja, Switakowski Michal, Michalm Szafranski, Li Xiao, Ueshin Takuya,
Mokhtar Mostafa, Boncz Peter, Ghodsi Ali, Paranjpye Sameer, Senster Pieter, Xin Reynold, and Zaharia Matei. 2020.
Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores. PVLDB 13, 12 (2020).

[64] WawrzoniakMichal, Müller Ingo, Bruno Rodrigo, and Alonso Gustavo. 2021. Boxer: Data Analytics on Network-enabled
Serverless Platforms. In CIDR.

[65] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive Data Analytics on Cold Data Using
Serverless Cloud Infrastructure. In SIGMOD.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

Using Cloud Functions as Accelerator for Elastic Data Analytics 161:27

[66] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden. 2020. Starling: A Scalable Query Engine
on Cloud Functions. In SIGMOD.

[67] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow: Scalable Analytics on Serverless
Infrastructure. In NSDI.

[68] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun Murthy, and Carlo Curino. 2015. Apache Tez: A
Unifying Framework for Modeling and Building Data Processing Applications. In SIGMOD.

[69] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa,
Joseph E. Gonzalez, Ion Stoica, and David A. Patterson. 2021. What Serverless Computing is and Should Become: The
next Phase of Cloud Computing. CACM 64, 5 (apr 2021), 76–84.

[70] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian Sun, Nezih Yegitbasi, Haozhun Jin,
Eric Hwang, Nileema Shingte, and Christopher Berner. 2019. Presto: SQL on Everything. In ICDE.

[71] Panagiotis Sioulas and Anastasia Ailamaki. 2021. Scalable Multi-Query Execution Using Reinforcement Learning. In
SIGMOD.

[72] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paulson, Andrew Pavlo, and Alexander Rasin.
2010. MapReduce and Parallel DBMSs: Friends or Foes? CACM 53, 1 (2010), 64–71.

[73] Xiangyao Yu, Matt Youill, Matthew E. Woicik, Abdurrahman Ghanem, Marco Serafini, Ashraf Aboulnaga, and Michael
Stonebraker. 2020. PushdownDB: Accelerating a DBMS Using S3 Computation. In ICDE.

[74] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing
with working sets.. In HotCloud.

[75] Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong Du. 2021. G-TADOC:
Enabling efficient GPU-based text analytics without decompression. In ICDE.

[76] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018. Efficient document analytics on
compressed data: Method, challenges, algorithms, insights. PVLDB 11, 11 (2018), 1522–1535.

[77] Qizhen Zhang, Phil Bernstein, Daniel S. Berger, Badrish Chandramouli, Boon Thao Loo, and Vincent Liu. 2022.
CompuCache: Remote Computable Caching using Spot VMs. In CIDR.

[78] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, and Badrish Chandramouli. 2021. Redy: Remote Dynamic Memory
Cache. PVLDB 15, 4 (2021).

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 161. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cloud Data Lakes
	2.2 Serverless Query Services
	2.3 Cloud Functions
	2.4 Query Processing in Cloud Functions

	3 Motivation and Design
	3.1 Scalability of Computing Services
	3.2 Cost-efficiency of Computing Services
	3.3 Architecture Overview
	3.4 Cluster Auto-scaling
	3.5 Query Queues

	4 Query Execution
	4.1 Table Scan
	4.2 Join
	4.3 Aggregation
	4.4 Implementation

	5 Sub-plan Optimization
	5.1 Instance Size of Cloud Functions
	5.2 Split Size of Base Tables
	5.3 Join Algorithm Selection
	5.4 Aggregation Algorithm Selection
	5.5 Number of Partitions

	6 Evaluation
	6.1 Experimental Setup
	6.2 Query Latency
	6.3 Monetary Cost
	6.4 Scalability
	6.5 Elasticity
	6.6 Effects of Early Projection
	6.7 Effects of Chain Join
	6.8 Effects of Direct Write-back
	6.9 Effects of Late Shuffling
	6.10 Effects of Query Optimization

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

