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ABSTRACT
Improving the performance and reducing the cost of cloud data
systems is increasingly challenging. Data processing units (DPUs)
are a promising solution. We characterize their capabilities and
constraints. We then propose DPDPU, a platform for holistically
exploiting DPUs to optimize data processing tasks that are critical
to performance and cost. It seeks to �ll the semantic gap between
DPUs and data processing systems and handle DPU heterogeneity
with three engines dedicated to compute, networking, and storage.
This paper describes our vision, DPDPU’s key components, their
associated utilization challenges, as well as the current progress
and future plans.

1 INTRODUCTION
Recent trends in computing and data center architectures have
made improving the performance and cost e�ciency of cloud data
systems increasingly challenging. First, speedup of general-purpose
processors is not keeping up with data growth. This has led to de-
graded compute-bound performance gains over large volumes of
data. Second, high-bandwidth I/O devices, e.g., solid-state drives
(SSDs) and network interface cards (NICs), have greatly increased
the speed of data movement. However, since the CPU instructions
executed per-byte-accessed during I/O remains nearly constant [14],
moving data at a higher rate consumes signi�cantly more CPU re-
sources. Moreover, cloud providers are evolving their data centers to
be more disaggregated. With decoupled compute and data, resource
disaggregation intensi�es network communication, exacerbating
the performance and cost challenges in cloud data systems.

A long line of work has aimed to address these cloud data process-
ing challenges: hardware acceleration using domain-speci�c hard-
ware (e.g., GPUs [9, 13, 24, 25, 32, 36] and FPGAs [12, 18, 33, 41]),
OS kernel bypass with userspace I/O (e.g., RDMA [30, 38, 43]
and SPDK [1, 14]), as well as caching [47] and compute push-
down [42, 46] to minimize the impact of disaggregation. Each of
these proposals has limitations of its own. Hardware acceleration
demands deep hardware expertise and embeds domain-speci�c,
non-portable characteristics into system designs; userspace I/O
requires modi�cation to applications for direct hardware access,
making it impractical for existing large-scale software systems such
as DBMSs to adopt; though e�ective in improving performance,
techniques targeting resource disaggregation fall short to reduce
cost. Overall, there is a lack of holistic platforms that systematically
combat cloud data processing performance and cost challenges.
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Data processing units (DPUs) [2–5, 26], the latest generation of
programmable NICs (i.e., SmartNICs), emerge as a promising hard-
ware platform. A DPU is a System-on-a-Chip (SoC) equipped with a
collection of hardware resources optimized for data-path e�ciency.
This includes energy-e�cient CPUs (e.g., Arm cores), hardware
accelerators (e.g., compression and encryption ASICs), network
processors, and a moderate amount of onboard memory. DPUs are
positioned to overcome the limitations of existing proposals. As
an SoC, a DPU runs independently of the host. It can, therefore,
augment the overall system architecture without modifying host
applications, facilitating portability and adoption. In addition, a
DPU can o�oad host I/O processing at line-rate, reducing resource
consumption on the host.

E�ective utilization of DPUs for data processing systems has to
address the following challenges.
Challenge #1: abstraction mismatch. DPUs are packet-oriented
networking devices. Consequently, the programming interfaces
exposed by DPUs are not intended for data system developers and
operators. For instance, NVIDIA’s DOCA [27] and Intel’s IPDK [16]
enable users to build in-network o�oading pipelines. They provide
libraries such as DPDK [22], OVS [34], and P4 [35], with which user
programs operate on packets, �ows, and raw bytes, rather than
data objects (e.g., pages and records). Friendlier DPU interfaces and
toolkits are thus needed for data systems.
Challenge #2: resource diversity. A DPU SoC consists of a spec-
trum of hardware resources, ranging from general CPU cores to
specialized ASICs and peer device accessibility via PCIe. Orches-
trating these processing units for various data tasks and scheduling
tasks across them to re�ect workload dynamics are non-trivial. [23].
Challenge #3: DPU heterogeneity. Many parties are producing
their own DPUs, such as NVIDIA BlueField [4], Intel IPU [3], Mi-
crosoft Fungible [2], Alibaba CIPU [5], and AWS Nitro [6]. Running
data systems on heterogeneous DPUs requires an infrastructure
that facilitates portability. Even though DPUs share similar ar-
chitectural characteristics (Section 3), they di�er signi�cantly in
detailed hardware speci�cations. For example, NVIDIA BlueField-2
is equipped with a regular expression hardware accelerator, which
is missing in Intel IPU; BlueField-3 supports generic code o�oading
to NIC cores, while most other DPUs only support match-action
table style network o�oading. Making things worse, DPU vendors
often provide proprietary SDKs for programming the device. With-
out a portable framework, developers have to manually rewrite
DPU-speci�c optimizations for all the di�erent DPUs.

This paper proposes DPDPU, a holistic DPU-centric framework
for cloud data processing. Our key insight is when the aforemen-
tioned impediments are tamed, data systems can e�ciently exploit
DPUs to optimize a wide spectrum of tasks, e.g., workloads that are
compute-, network-, or storage-intensive.

DPDPU includes three components to judiciously harness the
various DPU resources: a compute engine that runs on DPU CPU



Figure 1: Compression performance on di�erent hardware

cores and hardware accelerators for tasks such as expensive on-path
data operations (e.g., compression and encryption) and pushdown
database operators (e.g., predicates and aggregation); a network en-
gine that o�oads communication primitives from host CPUs to the
DPU network interfaces; and �nally, a storage engine that leverages
direct storage device access to improve local and disaggregated
storage performance while saving cost. DPDPU further schedules
tasks across DPU hardware accelerators, DPU CPUs, and host CPUs
based on task speci�cations and resource availability.

DPDPU o�ers high-level, hardware-neutral interfaces to ease
programming and porting e�ort for DPU accelerated data systems.
Speci�cally, users write stored procedures to express tasks in the
compute engine. The network and storage engines expose a familiar
asynchronous I/O abstraction, allowing existing data systems to
adopt DPDPU with minimal change. We eschew vendor-speci�c
features in the framework such that customized optimizations atop
DPDPU are portable across di�erent DPUs.

This paper makes the following contributions.
• We demonstrate the performance and cost challenges in
cloud data processing (Section 2), and show the opportunities
enabled by DPUs (Section 3).

• We present the overall vision of DPDPU (Section 4).
• We discuss challenges in each DPDPU component and pro-
pose the high-level design (Sections 5, 6, and 7).

• We survey related prior work (Section 8), report on current
progress, and propose next steps for DPDPU (Section 9).

2 EMERGING CHALLENGES IN THE CLOUD
Compute ine�ciency. It is well-known that CPU speed has been
increasing rather slowly over the past decade. On the other hand,
data systems frequently invoke compute-heavy subroutines. For
instance, DBMSs often compress and encrypt data to handle privacy,
security, and data size challenges. Can data systems still rely on
CPUs to sustain good performance on these compute tasks?

To answer this question, we measured the performance of loss-
less compression (with the DEFLATE algorithm [29]) on natural
language datasets of various sizes on an AMD EPYC CPU and an
Arm CPU. Figure 1 shows that, while the EPYC CPU outperforms
the Arm CPU, both su�er from high latencies which grow with
data size. This shows that it is increasingly di�cult for data systems
to perform compute-intensive operations on large-scale data.
I/O cost. Performing high-bandwidth I/O is among the most com-
mon tasks in database systems. We next evaluate the CPU consump-
tion of accessing 8 KB pages from Linux-managed SSDs.

Figure 2: CPU consumption
of storage access

Figure 3: CPU consumption
of network communication

As observed in Figure 2, the number of CPU cycles increases
linearly with I/O throughput. When the throughput reaches the
peak (450 K pages per second), the average CPU consumption is as
high as 2.7 cores. We also tested Linux storage performance with
the more recent io_uring, and observed similar CPU cost. The
experiment highlights the growing hardware cost due to high I/O
requirements of data systems.
Disaggregation overhead. Lastly, we assess the overhead of re-
source disaggregation. In particular, storage disaggregation, where
compute and storage are hosted on di�erent servers connected via
the network, has been commonplace in today’s cloud data centers.
The architecture enables better �exibility in resource management
but at the expense of additional network I/O for storage accesses.
leading to higher access latency and even more CPU consumption.

To quantify the latency and CPU consumption overhead of dis-
aggregation, we measure the cost of network communication via
TCP/IP sockets for transferring 8KB pages over a 100Gbps net-
work. As shown in Figure 3, the additional network I/O induced by
disaggregation consumes signi�cant CPU resources, particularly at
higher bandwidth. This I/O processing compete with other compute
tasks, such as those in Section 2, for CPUs.

3 DPU OPPORTUNITIES
DPUs are SoC-based SmartNICs1. Figure 4 shows the architecture of
NVIDIA BlueField-2 (BF-2) [4], a popular DPU in mass production.
Resources on a DPU can be categorized into �ve types: (1) energy-
e�cient CPU cores, (2) onboard memory, (3) hardware accelerators,
(4) high-speed network interfaces, and (5) PCIe interface. BF-2
consists of 8 Arm A72 cores clocked at 2.5 GHz, 16 GB DDR4 mem-
ory, a set of accelerators including regular expression, compression,
encryption and deduplication, ConnectX-6 NIC with 100Gbps band-
width, and a PCIe 4.0 switch that has access to host memory and
other PCIe-connected devices such as SSDs and GPUs. Although
the hardware details vary across vendors, the general capabilities of
other DPUs are similar, e.g., Intel IPU [3] andMicrosoft Fungible [2].
These resources, combined with DPU data-path optimizations, can
be leveraged to address the above challenges.

Speci�cally, to improve compute e�ciency, data systems can
utilize the hardware accelerators to execute compute-intensive op-
erations on the data path, which are ASICs designed for speci�c
compute tasks; improving power e�ciency and performance com-
pared to CPUs. Figure 1 shows that the compression accelerator on
1The other major category is FPGA-based SmartNICs. We focus on SoC-based Smart-
NICs for their easier programmability and development process.
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Figure 4: NVIDIA BlueField-2 DPU architecture

BF-2 outperforms CPUs by an order of magnitude. To reduce I/O
cost, DPUs usually provide advanced userspace libraries to build
e�cient I/O pipelines. For instance, BF-2 o�ers SPDK and DPDK so
direct access to storage devices and network interfaces is possible
without host involvement. Together with the general-purpose CPU
cores and a moderate amount of memory on board, users can build
arbitrary, low-latency and high-bandwidth I/O services to free the
host from expensive storage and network activities.

Despite the potential bene�ts, challenges around abstraction
mismatch, resource diversity, and DPU heterogeneity must be ad-
dressed in order to better utilize DPUs for data processing systems.

4 THE DPDPU FRAMEWORK
We envision a DPU-powered software platform that exploits the op-
portunities in Section 3 to tackle the cloud data processing problems
in Section 2. The platform, called DPDPU, does so by (1) bridging
the semantic gap between raw DPU resources and cloud data pro-
cessing tasks, (2) e�ciently utilizing diverse hardware resources
on di�erent DPUs, and (3) decoupling hardware details of di�erent
DPUs from the optimizations at the data system layer. As shown in
Figure 5, DPDPU consists of threemodules that allow for optimizing
compute-intensive and I/O-intensive operations.
Components and accessed resources.We now describe the DPU
resources managed by each component and the interactions be-
tween components. The next sections discuss detailed designs of
each component and the key challenges.
Compute Engine o�ers e�cient and versatile computational power
for data processing tasks. The engine carefully orchestrates these
tasks across four types of compute resources: DPU onboard CPUs,
DPU hardware accelerators, host CPUs, and other popular acceler-
ators, e.g., GPUs and FPGAs, connected via PCIe. The working set
of execution can be cached in both DPU and host memory.
Network Engine handles network I/O. It utilizes the advanced net-
working facilities built in DPUs (high-speed interfaces, match-
action o�oading, and user libraries) to improve network I/O e�-
ciency. More speci�cally, the DPU DMA engine serves as an ab-
straction boundary to decouple popular networking APIs utilized
by host applications from their protocol execution, o�oading to
the DPU using onboard memory, CPU, and the network interface.
Storage Engine improves storage path e�ciency, including requests
from both local applications and those from remote clients. For local
applications, the engine o�ers a lightweight user library to forward
storage requests from the client to the DPU, where it accesses SSDs
via PCIe peer-to-peer communication. For requests from remote
clients, it coordinates with the Network Engine to execute storage
requests immediately on the DPU without involving the host.
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Figure 5: DPDPU components—Compute, Network, and Stor-
age Engines (CE, NE, and SE)—and resources they access.

Interactions. DPDPU components can be composed to execute
complex tasks. For instance, in response to a remote storage access
request, a DPDPU program may �rst read the data from local SSDs
using the Storage Engine. It then invokes the Compute Engine to
compress the data in the DPU compression accelerator. Finally, the
Network Engine delivers the result to the client.

Take predicate pushdown as another example. LeveragingDPDPU,
the storage server �rst reads the database records from SSDs through
the Storage Engine. It then directly applies predicates on these tu-
ples using the Compute Engine, and sends only the quali�ed tuples
back to the remote database server via the Network Engine.

DPDPU facilitates composability using two mechanisms. First, it
enables shared states across the three engines via the DPU memory.
The schema of the state and cached data are customizable by the
application. Note that within each component, consistency is not
guaranteed due to asynchronous accesses, e.g., the network, the
hardware accelerators, and host resources via PCIe.

Moreover, DPDPU enables e�cient, streamlined data communi-
cation across engine boundaries. To do so, the API and the execution
model of the engines facilitate pipelined data processing—one en-
gine’s output can be streamed to another engine without waiting for
the completion of work-in-progress. This allows for constructing
e�cient asynchronous pipelines that overlap I/O and computation.

5 COMPUTING
We design the Compute Engine (CE) with the following goals.

(1) E�cient. As the primary motivation for CE is to address
compute ine�ciency, we aim to maximize the e�ciency of
compute tasks that are o�oaded to CE.

(2) General-purpose. To bene�t various cloud data processing
systems, the CE should handle a wide spectrum of tasks,
from data-path primitives to relational operator pushdown.

(3) Easy to program. A major di�culty of programming DPUs
is the low-level interfaces across di�erent hardware designs.
CE o�ers APIs familiar to data system developers.

(4) Portable. In addition to portability across DPUs, CE must
also account for the diverse compute resources on the DPU
and the host when executing the same user tasks.
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Interface.We provide stored procedures (sprocs) for users to ex-
press their compute tasks. Previous work [44] has explored using
sprocs as a general programming abstraction to o�oad computa-
tion for data processing systems. Despite their bene�ts, sprocs are
primarily designed for CPU execution, and lacks native support for
hardware acceleration. To overcome this, we introduce DP kernels,
an extensible set of specialized functions built in DPDPU that op-
timizes sproc execution e�ciency. The user can query which DP
kernels are available in the CE and select the ones that match the
application’s need. However, they do not concern developers with
hardware details. Sprocs with DP kernels naturally satisfy CE’s
general-purpose and easy to program goals. We next discuss execu-
tion details and explain how e�ciency and portability is achieved.
Execution. A sproc is �rst registered with the CE, which pre-
compiles it into a shared library, which the user program loads
to run on a DPU core. DP kernels, on the other hand, represent
compute-heavy tasks and thus are prioritized for hardware acceler-
ation to maximize compute e�ciency. However, DPUs are hetero-
geneous, and speci�c accelerators are not universally supported.
E.g., BlueField-2 has a RegEx engine, which is not available on Intel
IPU. To ensure the same user code can run on di�erent DPUs, DP
kernels must be portable and backward- and forward-compatible.

To that end, we allow that each DP kernel can be executed on
any compute hardware, e.g., CPUs, ASICs, FPGAs, or GPUs. The
actual execution during runtime depends on hardware availability.
Users can specify where a DP kernel is executed (speci�ed exe-
cution); alternatively, the CE can construct a schedule for all the
DP kernels (scheduled execution). Scheduled execution enables the
CE to optimize the overall performance of a sproc given hardware
constraints of the target DPU platform.
Example. An example of a sproc with a DP kernel is shown in
Figure 6. The sproc serves a request from a remote client that reads
a set of pages, compresses them, and sends the compressed pages
back to the client. Since compression is the most compute-intensive
task in this sproc, we accelerate it using the compression kernel
(dpk_compress). Here, the user �rst speci�es the kernel to be exe-
cuted on the compression accelerator (line 20). If the accelerator is
currently unavailable on the DPU, the user moves the computation
to a DPU CPU core (line 24).

Alternatively, the implementation can leave target device un-
speci�ed in dpk_compress. The kernel will then be scheduled by
CE, and the call always returns a valid work item in progress. The
main bene�t of speci�ed execution is predictable program behavior;
it, however, leaves the burden of optimizing sproc performance to
the user.
Open challenges. Developing the CE must address several tech-
nical challenges. First, since a sproc may be invoked in parallel at
a high rate, e.g., per received packet, proper scheduling is critical
to the overall performance. Prior work adopted various schedul-
ing disciplines to achieve high NIC o�oading performance. For
instance, iPipe [23] utilizes a �rst-come-�rst-served queue and a
de�cit round robin queue to schedule tasks with low and high vari-
ance respectively across DPU and host CPU cores. The CE also
needs to schedule DP kernels across all computing units. Hard-
ware accelerators exhibit vendor-speci�c characteristics, (e.g., high

⌥ ⌅
1 import dpdpu.compute_engine as ce
2 import dpdpu.network_engine as ne
3 import dpdpu.storage_engine as se
4

5 read_compress_send_pages(req):
6 page_read_list = {}
7 page_comp_list = {}
8 page_send_list = {}
9 dpk_compress = ce.get_dpk(�compress�)
10

11 for net_req in req.pages:
12 # async read
13 read_req = se.read(net_req.file_id ,
14 net_req.addr , PAGE_SIZE)
15 page_read_list.add(read_req)
16

17 for read_req in page_read_list:
18 wait(read_req)
19 # async compression (fast)
20 comp_req = dpk_compress(read_req.data ,
21 �dpu_asic�)
22 if comp_req is None:
23 # async compression (slow)
24 comp_req = dpk_compress(read_req.data ,
25 �dpu_cpu�)
26 page_comp_list.add(comp_req)
27

28 for comp_req in page_comp_list:
29 wait(comp_req ):
30 # async send with TCP
31 send_req = ne.tcp.send(req.client ,
32 comp_req.data)
33 page_send_list.add(send_req)
34

35 for send_req in page_send_list:
36 wait(send_req)⌃ ⇧

Figure 6: An example of sproc with DP kernels where page
compression is accelerated (speci�ed execution). Di�erent
modes of execution facilitate portability.

throughput with high latency) that are distinct from CPUs. Conse-
quently, the problem space for scheduling in DPDPU is expanded:
How to schedule DP kernels on the same accelerator? How to co-
schedule sprocs and DP kernels? How to cater for performance
targets from di�erent applications?

Second, a server equipped with a DPU can run multiple applica-
tions. The CE should provide fairness and performance isolation in a
multi-tenant setting. A naive approach can use containers to slice
CPUs and memory on both the DPU and host. A complete solution,
however, must also consider hardware accelerators. Compared to
CPUs, accelerator capacity (i.e., the number of concurrent tasks)
varies greatly across hardware. Accelerators also lack virtualization
support. Hence, multiplexing resources and isolating DP kernel
execution on accelerators present a challenge.

Finally, CE can be extended to PCIe-connected accelerators such
as FPGAs and GPUs. We need to map DP kernels to these devices
and �nd e�cient data paths based on how a sproc and its DP
kernels span across di�erent locations. Since such accelerators have
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more cores and memory than DPU accelerators, fusing multiple
DP kernels inside an accelerator may improve performance.

6 NETWORKING
Our primary goal for the Network Engine (NE) is to lower commu-
nication overhead while maintaining high performance for popular
transport protocols, e.g., TCP and, more recently, RDMA. The princi-
ple in designing NE is to o�oad CPU consuming network activities
to the DPU, while leaving only lightweight front-end libraries that
emulate existing communication frameworks’ APIs. This is enabled
by DPU’s DMA and packet generation capabilities.
Optimizing TCP. TCP/IP remains the most popular protocol for
network communication in data processing systems, which con-
sumes substantial host CPU cycles (§2). Recent proposals mitigated
TCP cost with DPUs. For instance, IO-TCP [20] divides TCP into a
control plane (e.g., connection management) that runs on a single
core on the host and a data plane (data transmission) that runs on
the DPU. These solutions, however, target speci�c applications (e.g.,
streaming media �les) and require application modi�cations.

To support general communication for distributed and disaggre-
gated data processing, we propose to move the TCP/IP stack to the
DPU and provide a POSIX-like socket API for host applications
through a user library. Doing so requires tackling two challenges.
First, as the DPU’s CPU is signi�cantly weaker than the host’s, the
DPU’s TCP/IP stack must be carefully optimized to avoid perfor-
mance degradation. Second, as network messages are eventually
processed on the host, �ow control now spans the host and DPU.
We must co-design TCP on the DPU and host-DPU communication
to re�ect signals from host applications in the �ow control protocol.
Optimizing RDMA. Remote Direct Memory Access (RDMA) has
emerged as a promising data center networking technology for
achieving high-speed network communication in data processing
systems [30, 43]. RDMA runs in userspace and can completely by-
pass OS overhead. It also eliminates remote CPU involvement via
DMA from NIC hardware. To best utilize RDMA for database sys-
tems, DFI [38] layers a data �ow interface atop the transport to
provide pipelined, thread-centric �ow execution. It achieves com-
munication performance that is close to the raw RDMA network.

Despite its performance bene�ts over traditional networking
stacks, issuing RDMA operations is still CPU costly. For instance,
accessing the send/receive queues in an RDMA queue pair requires
spinlocks and memory fences to ensure queue ordering. CPU stalls
can also happen when ringing the doorbell register of the RDMA
NIC. These overheads have been con�rmed by recent work [11].

Figure 7 depicts our proposal for optimizing RDMA communica-
tion. The design o�oads the heavy issuing-side RDMA handling
to the DPU. We �rst replace the RDMA queues with lock-free ring
bu�ers to accept user requests. These bu�ers are DMA-accessible
such that NE on the DPU can poll user requests using the DPU

SENIC

Mem CPU

SSDsReq

Host Mem CPU

SSDsReq

Host

Figure 8: Round trips from NIC to host in today’s disaggre-
gated storage (left) can be saved with DPDPU SE (right).

DMA engine. Upon receiving requests, NE issues corresponding
RDMA read/write or send/receive to access memory on the remote
machine. This asynchronous execution of RDMA must be served
together with the non-blocking interface on the host, such that
applications only spend minimal resources polling responses.

Cowbird [11] proposes an asynchronous I/O abstraction for dis-
aggregated memory; it o�oads RDMA to programmable switches
and harvested VMs. NE can be viewed as an extension to Cowbird
targeting general network communication, supporting both one-
and two-sided RDMA. The key challenge is co-designing the inter-
face and the execution of the full set of RDMA operations while
consuming minimal resources on both the host and the DPU.

7 STORAGE
O�oading �le-related operations onto a DPU can free signi�cant
host resources (§2). In addition, a DPU sits on the data path to
serve requests for disaggregated storage (Figure 8): when a remote
storage request arrives, the DPU can service the request immedi-
ately by accessing PCIe-connected SSDs. In comparison, existing
disaggregated storage must process the request using host CPUs,
incurring additional PCIe, OS, and storage stack overheads.
O�loading �le execution.We �rst propose a DPU-backed stor-
age framework that o�ers a POSIX-like �le system API for host
applications to manage �les and perform �le I/O. The processing of
�le requests is o�oaded to the DPU, where we build a �le service
leveraging userspace storage solutions, e.g., SPDK, to optimize �le
I/O e�ciency. Similar to NE, the contention between application
threads is minimized with lock-free ring bu�ers in the user library,
and the requests are lazily DMA’ed by the DPU. Our design requires
delegating the management of SSDs from host servers to DPUs,
which is a popular trend of adopting DPUs [28].
O�loading remote requests. To fully exploit DPU for disaggre-
gated storage, we propose an o�oad-engine in the SE that allows
users to directly process remote storage requests on the DPU. A
supplied UDF parses network messages to identify requests that
can be o�oaded, and translates them into �le operations. Since the
DPU maintains the mapping between user �les and physical blocks
on the SSDs (the �le mapping) in its aforementioned �le service, SE
can directly execute the �le operation without host involvement.
The key challenge in realizing this design is the limited resources
on DPUs. For instance, transaction updates in cloud-native DBMSs
are re�ected on disaggregated storage servers with log replay [7, 40],
which can consume up to 100s GB memory caching hot pages to
prevent write ampli�cation. This memory footprint is an order of
magnitude larger than the DPU’s memory capacity (e.g., 16 GB).
Hence, storage requests unsuited for DPU o�oading must still be
forwarded to the host. This partial o�oading raises several technical
questions: which requests should be o�oaded? What should the
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o�oading API look like to re�ect the division? How do we split
network tra�c without violating transport protocol semantics?

8 RELATEDWORK
SmartNICs have been explored for distributed systems and com-
puter networking. Below we summarize this line of work.

LineFS [19] improves the e�ciency of distributed �le system
by o�oading CPU-intensive tasks to the DPU and use pipeline
parallelism to improve performance. Xenic [31] caches data on
DPUs to accelerate distributed transactions. hKVS [10] is a KV
store that uses DPU memory to cache hot records and meticulously
synchronizes updates to the host. iPipe [23] proposes an actor-based
execution framework that utilizes DPUs for distributed applications,
enabling scheduling and �exible load migration between the DPU
and the host. More recently, IO-TCP [20] proposes a host-DPU
codesigned TCP that leverages the data-path e�ciency of DPUs to
o�oad the streaming of media �les. Lovelock [28] is a DPU-based
cluster manager that eliminates the need for host servers, e.g., for
hardware accelerators and storage devices.

DPUs are increasingly attracting attention in the database com-
munity. Thostrup et al. [37] evaluate the performance bene�ts of
a speci�c DPU (NVIDIA BlueField-2) for two speci�c DBMS com-
ponents (a B-tree index and a sequencer). Their results are aligned
with our DPU characterization. SmartShu�e [21] o�oads to DPUs
networking components as well as DBMS tasks in data shu�ing.

Our work di�ers from others in the generality of our proposal.
It systematically exploits the capabilities of DPU SoCs to tackle a
spectrum of challenges in cloud data processing. The three comple-
mentary engines in DPDPU present an easily-utilized and portable
o�ering of DPU resources for data system optimizations.

More generally, o�oading operations to programmable network
and storage devices has been shown to be an e�ective approach to
improving database systems e�ciency [8, 15, 17, 39]. Our proposal
seeks to support relevant data-path operations in a uni�ed platform.

9 PROGRESS AND NEXT STEPS
Our �rst step towards realizing DPDPU is developing DDS [45], a
DPU-optimized disaggregated storage server architecture as part
of the Storage Engine. Recall from Section 7 that a DPU is inappro-
priate for fully o�oading disaggregated storage requests. Hence,
the design of DDS is centered around partial o�oading, i.e., remote
storage requests are split between the DPU and the host. We need
to address three key questions: (1) how to access �les on SSDs directly
from the DPU? (2) how to direct tra�c between the DPU and the host?
and (3) how to enable general and e�cient DPU o�oading?

For (1), we developed a uni�ed �le system that directs �le opera-
tions on the host to the DPU. Doing so allows the DPU to own the
�le mapping for serving a remote request. Question (2) is handled
by a tra�c director that determines whether each packet should be
forwarded to the DPU or the host. It accomplishes the task without
breaking end-to-end transport semantics. Finally, for (3) we intro-
duce a high-level API in the o�oad engine for users to implement
the UDF in Section 7, and extensively employ zero-copy to maxi-
mize the e�ciency of request execution. We integrated DDS with
FASTER (a KV store) and Azure SQL Hyperscale (a cloud-native

DBMS), two production systems at Microsoft. Empirical studies
show that DDS can save up to 10s of CPU cores per storage server.

DPDPU opens a broad space of systems and optimization re-
search for cloud data processing. Our next steps are as follows.
Caching in DPU-backed �le system. DDS currently achieves
minimal memory footprint and has no support for caching on
either the host or the DPU in the �le system. With more memory,
we can cache hot data to further improve �le performance. How
to cache, however, is non-trivial because of separate sources of
access: caching in host memory favors host applications, while
DPU memory favors remote requests that can be o�oaded. A key
challenge is sizing the cache at the right granularity on the DPU
and host based on workload characteristics.
Faster persistence. Techniques such as caching and DDS have
been adopted to improve the read query performance for many data
systems. Although in cloud data systems writes are less prevalent
than reads, optimizing persistent updates, particularly their end-
to-end latency, is meaningful to mission critical applications and
presents unique challenges. Persistent operations often traverse
deeper storage stacks than reads; the backing store typically runs on
slow hard drives, many located in disaggregated storage. DPDPU of-
fers opportunities to accelerate persistence performance. By directly
connecting DPUs with fast persistent storage (e.g., NVMe SSDs)
through PCIe P2P, we can persist a write request to storage devices
or DPU’s onboard fast storage and immediately acknowledge the
request before forwarding the operation to the host. We plan to
design a generic DPU fast-persistence interface that allows existing
data systems to bene�t from fast persistence with minimum code
modi�cations. We also need to address the challenge of coordinated
recovery in this new model, as well as consistency issues arising
from concurrent reads, including both reads forwarded to the host
and those o�oaded to the DPU, and fast persistent writes.
Implementing DP kernels.DP kernels are at the core of DPDPU’s
Compute Engine for harvesting the compute e�ciency of various
DPU processing units. As detailed in Section 5, designing and imple-
menting these primitives is challenging. As DP kernels are portable
across DPUs, we need to investigate a collection of vendor-provided
DPU SDKs, seeking plans that avoid excessive engineering e�ort.
Scheduling DP kernels (and co-scheduling them with sprocs) based
on app-speci�c performance requirements is another critical task.
Database communication optimization. In addition to the de-
sign challenges in Section 6, developing the Network Engine re-
quires mapping out the details of target networking protocols (i.e.,
TCP and RDMA) and constructing cross-host-DPU operations that
decouple interface and protocol execution.

In our experience, the internal networking stack of cloud-native
production DBMSs is a primary source of I/O overhead. We thus
plan to dissect the networking stacks of open-source systems to
search for a common set of DBMS-speci�c communication tasks
suitable for DPU o�oading.
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